

Practical Mobile Forensics
Third Edition

A hands-on guide to mastering mobile forensics for the iOS,
Android, and the Windows Phone platforms

Rohit Tamma
Oleg Skulkin
Heather Mahalik
Satish Bommisetty

BIRMINGHAM - MUMBAI

Practical Mobile Forensics
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Devika Battike
Technical Editor: Aditya Khadye
Copy Editor: Safis Editing
Project Coordinator: Judie Jose
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tania Dutta
Production Coordinator: Arvindkumar Gupta

First published: July 2014
Second edition: May 2016
Third edition: January 2018

Production reference: 1220118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-919-8

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Rohit Tamma is a security program manager currently working with Microsoft. With over
8 years of experience in the field of security, his background spans management and
technical consulting roles in the areas of application and cloud security, mobile security,
penetration testing, and security training. Rohit has also coauthored couple of books, such
as Practical Mobile Forensics and Learning Android Forensics, which explain various ways to
perform forensics on the mobile platforms. You can contact him on Twitter at
@RohitTamma.

Writing this book has been a great experience because it has taught me several things,
which could not have been otherwise possible. I would like to dedicate this book to my
parents for helping me in every possible way throughout my life.

Oleg Skulkin is a digital forensics "enthusional" (enthusiast and professional) from Russia
with more than 6 years of experience, and is currently employed by Group-IB, one of the
global leaders in preventing and investigating high-tech crimes and online fraud. He holds
a number of certifications, including GCFA, MCFE, and ACE. Oleg is a coauthor of Windows
Forensics Cookbook, and you can find his articles about different aspects of digital forensics
both in Russian and foreign magazines. Finally, he is a very active blogger, and he updates
the Cyber Forensicator blog daily.

I would like to thank my mom and wife for their support and understanding, my friend,
Igor Mikhaylov, and my teammates from Group-IB Digital Forensics Lab: Valeriy Baulin,
Sergey Nikitin, Vitaliy Trifonov, Roman Rezvuhin, Artem Artemov, Alexander Ivanov,
Alexander Simonyan, Alexey Kashtanov, Pavel Zevahin, Vladimir Martyshin, Nikita
Panov, Anastasiya Barinova, and Vesta Matveeva.

Heather Mahalik is the director of forensic engineering with ManTech CARD, where she
leads the forensic effort focusing on mobile and digital exploitation. She is a senior
instructor and author for the SANS Institute, and she is also the course leader for the
FOR585 Advanced Smartphone Forensics course. With over 15 years of experience in digital
forensics, she continues to thrive on smartphone investigations, digital forensics, forensic
course development and instruction, and research on application analysis and smartphone
forensics.

Satish Bommisetty is a security analyst working for a Fortune 500 company. His primary
areas of interest include iOS forensics, iOS application security, and web application
security. He has presented at international conferences, such as ClubHACK and C0C0n. He
is also one of the core members of the Hyderabad OWASP chapter. He has identified and
disclosed vulnerabilities within the websites of Google, Facebook, Yandex, PayPal, Yahoo!,
AT&T, and more, and they are listed in their hall of fame.

About the reviewer
Igor Mikhaylov has been working as a forensics expert for 21 years. During this time, he
has attended a lot of seminars and training classes in top forensic companies and forensic
departments of government organizations. He has experience and skills in cellphones
forensics, chip-off forensics, malware forensics, and other fields. He has worked on several
thousand forensic cases.

He is the reviewer of Windows Forensics Cookbook by Oleg Skulkin and Scar de Courcier,
Packt Publishing, 2017.

He is the author of Mobile Forensics Cookbook, Packt Publishing, 2017.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Chapter 1: Introduction to Mobile Forensics 6

Why do we need mobile forensics? 7
Mobile forensics 8

Challenges in mobile forensics 10
The mobile phone evidence extraction process 12

The evidence intake phase 13
The identification phase 14

The legal authority 14
The goals of the examination 14
The make, model, and identifying information for the device 14
Removable and external data storage 15
Other sources of potential evidence 15

The preparation phase 15
The isolation phase 16
The processing phase 16
The verification phase 16

Comparing extracted data to the handset data 17
Using multiple tools and comparing the results 17
Using hash values 17

The documenting and reporting phase 17
The presentation phase 18
The archiving phase 18

Practical mobile forensic approaches 18
Overview of mobile operating systems 19

Android 19
iOS 20
Windows Phone 20

Mobile forensic tool leveling system 20
Manual extraction 22
Logical extraction 22
Hex dump 22
Chip-off 23
Micro read 23

Data acquisition methods 24
Physical acquisition 24
Logical acquisition 24
Manual acquisition 25

Table of Contents

[ii]

Potential evidence stored on mobile phones 25
Examination and analysis 26
Rules of evidence 28
Good forensic practices 29

Securing the evidence 29
Preserving the evidence 29
Documenting the evidence and changes 30
Reporting 30

Summary 31

Chapter 2: Understanding the Internals of iOS Devices 32

iPhone models 33
Identifying the correct hardware model 33

iPhone hardware 41
iPad models 42
Understanding the iPad hardware 44
Apple Watch models 45
Understanding the Apple Watch hardware 46
The filesystem 48
The HFS Plus filesystem 48

The HFS Plus volume 49
The APFS filesystem 50

The APFS structure 51
Disk layout 52
iPhone operating system 53

The iOS architecture 54
iOS security 55

Passcodes, Touch ID, and Face ID 56
Code Signing 56
Sandboxing 56
Encryption 57
Data protection 57
Address Space Layout Randomization 57
Privilege separation 57
Stack-smashing protection 57
Data execution prevention 58
Data wipe 58
Activation Lock 58

The App Store 58
Jailbreaking 59

Summary 60

Table of Contents

[iii]

Chapter 3: Data Acquisition from iOS Devices 61

Operating modes of iOS devices 62
The normal mode 62
The recovery mode 64
DFU mode 67
Setting up the forensic environment 70
Password protection and potential bypasses 70

Logical acquisition 71
Practical logical acquisition with libimobiledevice 72
Practical logical acquisition with Belkasoft Acquisition Tool 73
Practical logical acquisition with Magnet ACQUIRE 78

Filesystem acquisition 81
Practical jailbreaking 82
Practical filesystem acquisition with Elcomsoft iOS Forensic Toolkit 83

Physical acquisition 83
Practical physical acquisition with Elcomsoft iOS Forensic Toolkit 84

Summary 87

Chapter 4: Data Acquisition from iOS Backups 88

iTunes backup 89
Creating backups with iTunes 92
Understanding the backup structure 94

info.plist 95
manifest.plist 96
status.plist 96
manifest.db 97

Extracting unencrypted backups 99
iBackup Viewer 99
iExplorer 101
BlackLight 103

Encrypted backup 105
Elcomsoft Phone Breaker 105

Working with iCloud backups 107
Extracting iCloud backups 109

Summary 110

Chapter 5: iOS Data Analysis and Recovery 111

Timestamps 112
Unix timestamps 112
Mac absolute time 113

Table of Contents

[iv]

WebKit/Chrome time 113
SQLite databases 114

Connecting to a database 115
SQLite special commands 116
Standard SQL queries 117
Accessing a database using commercial tools 117

Key artifacts – important iOS database files 121
Address book contacts 122
Address book images 124
Call history 126
SMS messages 127
Calendar events 128
Notes 129
Safari bookmarks and cache 130
Photo metadata 131
Consolidated GPS cache 132
Voicemail 133

Property lists 133
Important plist files 134

The HomeDomain plist files 135
The RootDomain plist files 136
The WirelessDomain plist files 137
The SystemPreferencesDomain plist files 137

Other important files 137
Cookies 138
Keyboard cache 139
Photos 139
Thumbnails 140
Wallpaper 140
Recordings 141
Downloaded applications 141

Apple Watch 141
Recovering deleted SQLite records 144

Summary 145

Chapter 6: iOS Forensic Tools 146

Working with Cellebrite UFED Physical Analyzer 147
Features of Cellebrite UFED Physical Analyzer 147
Advanced logical acquisition and analysis with Cellebrite UFED Physical
Analyzer 148

Working with Magnet AXIOM 156
Features of Magnet AXIOM 156
Logical acquisition and analysis with Magnet AXIOM 157

Working with Belkasoft Evidence Center 166

Table of Contents

[v]

Features of Belkasoft Evidence Center 166
 iTunes backup parsing and analysis with Belkasoft Evidence Center 167

Working with Oxygen Forensic Detective 172
Features of Oxygen Forensic Detective 172
Logical acquisition and analysis with Oxygen Forensic Detective 173

Summary 178

Chapter 7: Understanding Android 179

The evolution of Android 180
The Android model 181

The Linux kernel layer 183
The Hardware Abstraction Layer 183
Libraries 184
Dalvik virtual machine 184
Android Runtime (ART) 185
The Java API framework layer 186
The system apps layer 186

Android security 186
Secure kernel 187
The permission model 188
Application sandbox 189
Secure inter-process communication 189
Application signing 189
Security-Enhanced Linux 190
Full Disk Encryption 190
Trusted Execution Environment 191

The Android file hierarchy 191
The Android file system 194

Viewing file systems on an Android device 194
Common file systems found on Android 197

Summary 199

Chapter 8: Android Forensic Setup and Pre-Data Extraction
Techniques 200

Setting up the forensic environment for Android 201
The Android Software Development Kit 201
The Android SDK installation 202
An Android Virtual Device 204
Connecting an Android device to a workstation 208

Identifying the device cable 209

Table of Contents

[vi]

Installing the device drivers 209
Accessing the connected device 210
The Android Debug Bridge 211

USB debugging 212
Accessing the device using adb 214

Detecting connected devices 214
Killing the local adb server 214
Accessing the adb shell 214
Basic Linux commands 215

Handling an Android device 218
Screen lock bypassing techniques 219

Using adb to bypass the screen lock 220
Deleting the gesture.key file 220
Updating the settings.db file 221
Checking for the modified recovery mode and adb connection 222
Flashing a new recovery partition 222
Using automated tools 223
Using Android Device Manager 225
Smudge attack 226
Using the Forgot Password/Forgot Pattern option 227
Bypassing third-party lock screens by booting into safe mode 228
Securing the USB debugging bypass using adb keys 228
Securing the USB debugging bypass in Android 4.4.2 229
Crashing the lock screen UI in Android 5.x 230
Other techniques 231

Gaining root access 232
What is rooting? 232
Rooting an Android device 233
Root access - adb shell 236

Summary 237

Chapter 9: Android Data Extraction Techniques 238

Data extraction techniques 239
Manual data extraction 240
Logical data extraction 240

ADB pull data extraction 240
Using SQLite Browser to view the data 243

Extracting device information 244
Extracting call logs 245
Extracting SMS/MMS 246
Extracting browser history 247

Analysis of social networking/IM chats 248

Table of Contents

[vii]

ADB backup extraction 249
ADB dumpsys extraction 251

Using content providers 253
Physical data extraction 257

Imaging an Android phone 257
Imaging a memory (SD) card 261
Joint Test Action Group 262
Chip-off 264

Summary 265

Chapter 10: Android Data Analysis and Recovery 266

Analyzing an Android image 267
Autopsy 267

Adding an image to Autopsy 267
Analyzing an image using Autopsy 271

Android data recovery 272
Recovering deleted data from an external SD card 273
Recovering data deleted from internal memory 280
Recovering deleted files by parsing SQLite files 280
Recovering files using file-carving techniques 283
Recovering contacts using your Google account 287

Summary 289

Chapter 11: Android App Analysis, Malware, and Reverse Engineering 290

Analyzing Android apps 291
Facebook Android app analysis 292
WhatsApp Android app analysis 294
Skype Android app analysis 294
Gmail Android app analysis 296
Google Chrome Android app analysis 297

Reverse engineering Android apps 299
Extracting an APK file from an Android device 300

Steps to reverse engineer Android apps 302
Android malware 304

How does malware spread? 307
Identifying Android malware 308

Summary 311

Chapter 12: Windows Phone Forensics 312

Windows Phone OS 312
Security model 315

Chambers 315

Table of Contents

[viii]

Encryption 316
Capability-based model 316
App sandboxing 318

Windows Phone filesystem 318
Data acquisition 321
Commercial forensic tool acquisition methods 322

Extracting data without the use of commercial tools 325
SD card data extraction methods 328

Key artifacts for examination 332
Extracting contacts and SMS 332
Extracting call history 333
Extracting internet history 333

Summary 334

Chapter 13: Parsing Third-Party Application Files 335

Third-party application overview 336
Chat applications 337
GPS applications 339
Secure applications 340
Financial applications 341
Social networking applications 341

Encoding versus encryption 345
Application data storage 348

iOS applications 349
Android applications 350
Windows Phone applications 353

Forensic methods used to extract third-party application data 353
Commercial tools 354

Oxygen Detective 354
Magnet IEF 357
UFED Physical Analyzer 360

Open source tools 361
Autopsy 361
Other methods of extracting application data 365

Summary 366

Other Books You May Enjoy 367

Index 370

Preface
The exponential growth in smartphones has revolutionized several aspects of our lives.
Smartphones are one of the most quickly adopted consumer technologies in recent history.
Despite their small size, smartphones are capable of performing many tasks, such as
sending private messages and confidential emails, taking photos and videos, making online
purchases, viewing sensitive information such as medical records and salary slips,
completing banking transactions, accessing social networking sites, and managing business
tasks. Hence, a mobile device is now a huge repository of sensitive data, which could
provide a wealth of information about its owner. This has in turn led to the evolution of
mobile device forensics, a branch of digital forensics, which deals with retrieving data from
a mobile device. Today, there is a huge demand for specialized forensic experts, especially
given the fact that the data retrieved from a mobile device is court-admissible.

Mobile forensics is all about using scientific methodologies to recover data stored within a
mobile phone for legal purposes. Unlike traditional computer forensics, mobile forensics
has limitations in obtaining evidence due to rapid changes in technology and the fast-paced
evolution of mobile software. With different operating systems and a wide range of models
being released onto the market, mobile forensics has expanded over the past few years.
Specialized forensic techniques and skills are required in order to extract data under
different conditions.

This book takes you through various techniques to help you learn how to forensically
recover data from different mobile devices with the iOS, Android, and Windows Mobile
operating systems. This book also covers behind the scenes details, such as how data is
stored and what tools actually do in the background, giving you deeper knowledge on
several topics. Step-by-step instructions enable you to try forensically recovering data
yourself.

The book is organized in a manner that allows you to focus independently on chapters that
are specific to your required platform.

Preface

[2]

Who this book is for
This book is intended for forensic examiners with little or basic experience in mobile
forensics or open source solutions for mobile forensics. The book will also be useful to
computer security professionals, researchers, and anyone seeking a deeper understanding
of mobile internals. It will also come in handy for those who are trying to recover
accidentally deleted data (photos, contacts, SMS messages, and more).

What this book covers
Chapter 1, Introduction to Mobile Forensics, introduces you to the concepts of mobile
forensics, the core values, and the challenges involved. The chapter also provides an
overview of practical approaches and best practices involved in performing mobile
forensics.

Chapter 2, Understanding the Internals of iOS Devices, provides an overview of the popular
Apple iOS devices, including an outline of different models and their hardware. The book
explains iOS security features and device security and its impact on iOS forensics
approaches, focusing on iOS 9-11. The chapter also gives an overview of the HFS+ and
APFS filesystems and outlines the sensitive files that are useful for forensic examination.

Chapter 3, Data Acquisition from iOS Devices, covers various types of forensic acquisition
methods that can be performed on iOS devices, including logical, filesystem, and physical,
and guides you to prepare your desktop machine for forensic work. The chapter also
discusses passcode bypass techniques.

Chapter 4, Data Acquisition from iOS Backups, provides detailed explanations of modern iOS
backups and details what types of files are stored in a backup. The chapter also includes
step-by-step guides on creating encrypted and unencrypted backups and introduces
forensic tools capable of recovering data from backups.

Chapter 5, iOS Data Analysis and Recovery, discusses the types of data that is stored on iOS
devices and its most common locations in the filesystem. Common file types used in iOS
devices, such as plists and SQLite databases, are discussed in detail in order to provide an
understanding of how data is stored on a device, which will help forensic examiners to
efficiently recover data from those files.

Chapter 6, iOS Forensic Tools, introduces you to the most widely used commercial mobile
forensic suites, Cellebrite UFED, Belkasoft Evidence Center, Magnet AXIOM, and Oxygen
Forensic Detective, and contains step-by-step guides on how to use them in mobile forensic
examinations.

Preface

[3]

Chapter 7, Understanding Android, introduces you to the Android model, filesystem, and its
security features. This chapter provides an explanation of how data is stored on any
android device, which will be useful when carrying out forensic investigations.

Chapter 8, Android Forensic Setup and Pre-Data Extraction Techniques, guides you through
Android forensic setup and other techniques to use before extracting any information.
Screen lock bypass techniques and gaining root access are also discussed in this chapter.

Chapter 9, Android Data Extraction Techniques, provides an explanation of physical,
filesystem, and logical acquisition techniques to extract relevant information from an
Android device. This chapter covers imaging the device and other advanced techniques,
such as JTAG and Chip-Off.

Chapter 10, Android Data Analysis and Recovery, explains how to extract and analyze data
from Android image files. The chapter also covers the possibilities and limitations of
recovering deleted data from Android devices.

Chapter 11, Android App Analysis, Malware, and Reverse Engineering, includes an analysis of
some of the most widely used Android apps to retrieve valuable data. The chapter also
covers Android malware and techniques to reverse engineer an Android app to view its
data.

Chapter 12, Windows Phone Forensics, provides a basic overview of forensic approaches
when dealing with Windows Phones.

Chapter 13, Parsing Third-Party Application Files, guides you through how applications are
stored on Android, iOS, and Windows devices and how commercial and open source tools
parse through application data.

To get the most out of this book
The book details practical forensic approaches and explains techniques in a simple manner.
The content is organized in a way that allows even a user with basic computer skills to
examine a device and extract the required data. A Mac, Windows, or Linux computer
would be helpful to successfully repeat the methods defined in this book. Where possible,
methods for all computer platforms are provided.

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​PracticalMobileForensicsThirdEdition_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Alternatively, the ideviceinfo command-line tool available in the
libimobiledevice software library (http:/ ​/​www. ​libimobiledevice. ​org/ ​) can be used to
identify the iPhone model and its iOS version."

Any command-line input or output is written as follows:

$ ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"
< /dev/null 2> /dev/null

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Launch Belkasoft Acquisition Tool and choose the Mobile device option:"

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalMobileForensicsThirdEdition_ColorImages.pdf
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction to Mobile Forensics

There is no doubt that mobile devices have become part of our lives and revolutionized the
way we do most of our activities. As a result, a mobile device is now a huge repository that
holds sensitive and personal information about its owner. This has, in turn, led to the rise of
mobile device forensics, a branch of digital forensics that deals with retrieving data from a
mobile device. This book will help you understand forensic techniques on three main
platforms—Android, iOS, and Windows. We will go through various methods that can be
followed to collect evidence from different mobile devices.

In this chapter, we will cover the following topics:

Introduction to mobile forensics
Challenges in mobile forensics
Mobile phone evidence extraction process
Mobile forensic approaches
Good forensic practices

Introduction to Mobile Forensics Chapter 1

[7]

Why do we need mobile forensics?
According to Statista reports, the number of mobile phone users in the world is expected to
pass 5 billion by 2019. The world is witnessing technology and user migration from
desktops to mobile phones. Most of the growth in the mobile market can be attributed to the
continued demand for smartphones. The following graph, sourced from https:/ ​/​www.
statista.​com/​, shows the actual and estimated growth of smartphones from the year 2009
to the year 2019:

>

Growth of smartphones from 2009 to 2019 in million units

https://www.statista.com/
https://www.statista.com/
https://www.statista.com/
https://www.statista.com/
https://www.statista.com/
https://www.statista.com/
https://www.statista.com/
https://www.statista.com/
https://www.statista.com/

Introduction to Mobile Forensics Chapter 1

[8]

According to an Ericsson report, global mobile data traffic will reach 71 exabytes per month
by 2022, from 8.8 exabytes in 2017, a compound annual growth rate of 42 percent.
Smartphones of today, such as the Apple iPhone and the Samsung Galaxy series, are
compact forms of computers with high performance, huge storage, and enhanced
functionality. Mobile phones are the most personal electronic device that a user accesses.
They are used to perform simple communication tasks, such as calling and texting, while
still providing support for internet browsing, email, taking photos and videos, creating and
storing documents, identifying locations with GPS services, and managing business tasks.
As new features and applications are incorporated into mobile phones, the amount of
information stored on the devices is continuously growing. Mobile phones become portable
data carriers, and they keep track of all your movements. With the increasing prevalence of
mobile phones in people's daily lives and in crime, data acquired from phones becomes an
invaluable source of evidence for investigations relating to criminal, civil, and even high-
profile cases. It is rare to conduct a digital forensic investigation that does not include a
phone. Mobile device call logs and GPS data were used to help solve the attempted
bombing in Times Square, New York, in 2010. The details of the case can be found
at: https:/​/​www.​forensicon. ​com/ ​forensics- ​blotter/ ​cell- ​phone- ​email- ​forensics-
investigation-​cracks- ​nyc- ​times- ​square- ​car- ​bombing- ​case/ ​.

The science behind recovering digital evidence from mobile phones is called mobile
forensics. Digital evidence is defined as information and data that is stored on, received, or
transmitted by an electronic device that is used for investigations. Digital evidence
encompasses any and all digital data that can be used as evidence in a case.

Mobile forensics
Digital forensics is a branch of forensic science focusing on the recovery and investigation
of raw data residing in electronic or digital devices. The goal of the process is to extract and
recover any information from a digital device without altering the data present on the
device. Over the years, digital forensics has grown, along with the rapid growth of
computers and various other digital devices. There are various branches of digital forensics
based on the type of digital device involved, such as computer forensics, network forensics,
mobile forensics, and so on.

https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/

Introduction to Mobile Forensics Chapter 1

[9]

Mobile forensics is a branch of digital forensics related to the recovery of digital evidence
from mobile devices. Forensically sound is a term used extensively in the digital forensics
community to qualify and justify the use of a particular forensic technology or
methodology. The main principle for a sound forensic examination of digital evidence is
that the original evidence must not be modified. This is extremely difficult with mobile
devices. Some forensic tools require a communication vector with the mobile device, and
thus a standard write protection will not work during forensic acquisition. Other forensic
acquisition methods may involve removing a chip or installing a bootloader on the mobile
device prior to extracting data for forensic examinations. In cases where the examination or
data acquisition is not possible without changing the configuration of the device, the
procedure and the changes must be tested, validated, and documented. Following proper
methodology and guidelines is crucial in examining mobile devices as it yields the most
valuable data. As with any evidence gathering, not following the proper procedure during
the examination can result in loss or damage of evidence or render it inadmissible in court.

The mobile forensics process is broken down into three main categories—seizure,
acquisition, and examination/analysis. Forensic examiners face some challenges while
seizing the mobile device as a source of evidence. At the crime scene, if the mobile device is
found switched off, the examiner should place the device in a Faraday bag to prevent
changes should the device automatically power on. Faraday bags are specifically designed
to isolate the phone from the network. A Faraday bag can be found at: http:/ ​/​www. ​amazon.
com/​Black-​Hole-​Faraday- ​Bag- ​Isolation/ ​dp/​B0091WILY0.

If the phone is found switched on, switching it off has a lot of concerns attached to it. If the
phone is locked by a PIN or password, or encrypted, the examiner will be required to
bypass the lock or determine the PIN to access the device. Mobile phones are networked
devices and can send and receive data through different sources, such as
telecommunication systems, Wi-Fi access points, and Bluetooth. So, if the phone is in a
running state, a criminal can securely erase the data stored on the phone by executing a
remote wipe command. When a phone is switched on, it should be placed in a Faraday bag.
If possible, prior to placing the mobile device in the Faraday bag, disconnect it from the
network to protect the evidence by enabling the flight mode and disabling all network
connections (Wi-Fi, GPS, hotspots, and so on). This will also preserve the battery, which will
drain while in a Faraday bag, and protect against leaks in the Faraday bag. Once the mobile
device is seized properly, the examiner may need several forensic tools to acquire and
analyze the data stored on the phone.

http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0
http://www.amazon.com/Black-Hole-Faraday-Bag-Isolation/dp/B0091WILY0

Introduction to Mobile Forensics Chapter 1

[10]

Mobile device forensic acquisition can be performed using multiple methods, which are
defined later. Each of these methods affects the amount of analysis required, which will be
discussed in greater detail in the upcoming chapters. Should one method fail, another must
be attempted. Multiple attempts and tools may be necessary in order to acquire the
maximum data from the mobile device.

Mobile phones are dynamic systems that present a lot of challenges to the examiner in
extracting and analyzing digital evidence. The rapid increase in the number of different
kinds of mobile phones from different manufacturers makes it difficult to develop a single
process or tool to examine all types of devices. Mobile phones are continuously evolving as
existing technologies progress and new technologies are introduced. Furthermore, each
mobile is designed with a variety of embedded operating systems. Hence, special
knowledge and skills are required from forensic experts to acquire and analyze the devices.

Challenges in mobile forensics
One of the biggest forensic challenges when it comes to the mobile platform is the fact that
data can be accessed, stored, and synchronized across multiple devices. As the data is
volatile and can be quickly transformed or deleted remotely, more effort is required for the
preservation of this data. Mobile forensics is different from computer forensics and presents
unique challenges to forensic examiners.

Law enforcement and forensic examiners often struggle to obtain digital evidence from
mobile devices. The following are some of the reasons:

Hardware differences: The market is flooded with different models of mobile
phones from different manufacturers. Forensic examiners may come across
different types of mobile models, which differ in size, hardware, features, and
operating system. Also, with a short product development cycle, new models
emerge very frequently. As the mobile landscape is changing each passing day, it
is critical for the examiner to adapt to all the challenges and remain updated on
mobile device forensic techniques across various devices.
Mobile operating systems: Unlike personal computers, where Windows has
dominated the market for years, mobile devices widely use more operating
systems, including Apple's iOS, Google's Android, RIM's BlackBerry OS,
Microsoft's Windows Phone OS, HP's webOS, and many others. Even within
these operating systems, there are several versions, which makes the task of the
forensic investigator even more difficult.

Introduction to Mobile Forensics Chapter 1

[11]

Mobile platform security features: Modern mobile platforms contain built-in
security features to protect user data and privacy. These features act as a hurdle
during forensic acquisition and examination. For example, modern mobile
devices come with default encryption mechanisms from the hardware layer to the
software layer. The examiner might need to break through these encryption
mechanisms to extract data from the devices. The FBI versus Apple encryption
dispute was a watershed moment in this regard, where the security
implementation of Apple prevented the FBI from breaking into the iPhone seized
from an attacker in the San Bernardino case.
Preventing data modification: One of the fundamental rules in forensics is to
make sure that data on the device is not modified. In other words, any attempt to
extract data from the device should not alter the data present on that device. But
this is not practically possible with mobiles because just switching on a device
can change the data on that device. Even if a device appears to be in an off state,
background processes may still run. For example, in most mobiles, the alarm
clock still works even when the phone is switched off. A sudden transition from
one state to another may result in the loss or modification of data.
Anti-forensic techniques: Anti-forensic techniques, such as data hiding, data
obfuscation, data forgery, and secure wiping, make investigations on digital
media more difficult.
Passcode recovery: If the device is protected with a passcode, the forensic
examiner needs to gain access to the device without damaging the data on the
device. While there are techniques to bypass the screen lock, they may not always
work on all the versions.
Lack of resources: As mentioned earlier, with the growing number of mobile
phones, the tools required by a forensic examiner would also increase. Forensic
acquisition accessories, such as USB cables, batteries, and chargers for different
mobile phones, have to be maintained in order to acquire those devices.
Dynamic nature of evidence: Digital evidence may be easily altered either
intentionally or unintentionally. For example, browsing an application on the
phone might alter the data stored by that application on the device.
Accidental reset: Mobile phones provide features to reset everything. Resetting
the device accidentally while examining it may result in the loss of data.
Device alteration: The possible ways to alter devices may range from moving
application data or renaming files, to modifying the manufacturer's operating
system. In this case, the expertise of the suspect should be taken into account.

Introduction to Mobile Forensics Chapter 1

[12]

Communication shielding: Mobile devices communicate over cellular networks,
Wi-Fi networks, Bluetooth, and infrared. As device communication might alter
the device data, the possibility of further communication should be eliminated
after seizing the device.
Lack of availability of tools: There is a wide range of mobile devices. A single
tool may not support all the devices or perform all the necessary functions, so a
combination of tools needs to be used. Choosing the right tool for a particular
phone might be difficult.
Malicious programs: The device might contain malicious software or malware,
such as a virus or a Trojan. Such malicious programs may attempt to spread over
other devices over either a wired interface or a wireless one.
Legal issues: Mobile devices might be involved in crimes, which can cross
geographical boundaries. In order to tackle these multijurisdictional issues, the
forensic examiner should be aware of the nature of the crime and the regional
laws.

The mobile phone evidence extraction
process
Evidence extraction and forensic examination of each mobile device may differ. However,
following a consistent examination process will assist the forensic examiner to ensure that
the evidence extracted from each phone is well-documented and that the results are
repeatable and defendable. There is no well-established standard process for mobile
forensics.

Introduction to Mobile Forensics Chapter 1

[13]

However, the following figure provides an overview of process considerations for the
extraction of evidence from mobile devices. All methods used when extracting data from
mobile devices should be tested, validated, and well-documented:

Mobile phone evidence extraction process

A great resource for handling and processing mobile devices can be found
at: http:/ ​/​digital- ​forensics. ​sans. ​org/ ​media/ ​mobile- ​device-
forensic-process-v3.pdf.

As shown in the preceding figure, forensics on a mobile device includes several phases,
from the evidence intake phase to the archiving phase. The following sections provide an
overview of various considerations across all the phases.

The evidence intake phase
The evidence intake phase is the starting phase and entails request forms and paperwork to
document ownership information and the type of incident the mobile device was involved
in, and it outlines the type of data or information the requester is seeking. Developing
specific objectives for each examination is the critical part of this phase. It serves to clarify
the examiner's goals. Also, while seizing the device, care should be taken not to modify any
data present on the device. At the same time, any opportunity that might help the
investigation should not be missed. For example, at the time of seizing the device, if the
device is unlocked, then try to disable the passcode.

http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
http://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf

Introduction to Mobile Forensics Chapter 1

[14]

The identification phase
The forensic examiner should identify the following details for every examination of a
mobile device:

The legal authority
The goals of the examination
The make, model, and identifying information for the device
Removable and external data storage
Other sources of potential evidence

We will discuss each of them in the following sections.

The legal authority
It is important for the forensic examiner to determine and document what legal authority
exists for the acquisition and examination of the device, as well as any limitations placed on
the media prior to the examination of the device. For example, if the mobile device is being
searched pursuant to a warrant, the examiner should be mindful of confining the search to
the limitations of the warrant.

The goals of the examination
The examiner will identify how in-depth the examination needs to be based upon the data
requested. The goal of the examination makes a significant difference in selecting the tools
and techniques to examine the phone and increases the efficiency of the examination
process.

The make, model, and identifying information for the
device
As part of the examination, identifying the make and model of the phone assists in
determining what tools would work with the phone. For all phones, the manufacturer,
model number, carrier, and the current phone number associated with the cellular phone
should be identified and documented.

Introduction to Mobile Forensics Chapter 1

[15]

Removable and external data storage
Many mobile phones provide an option to extend the memory with removable storage
devices, such as the Trans Flash Micro SD memory expansion card. In cases when such a
card is found in a mobile phone that is submitted for examination, the card should be
removed and processed using traditional digital forensic techniques. It is wise to also
acquire the card while in the mobile device to ensure that data stored on both the handset
memory and card are linked for easier analysis. This will be discussed in detail in upcoming
chapters.

Other sources of potential evidence
Mobile phones act as good sources of fingerprint and other biological evidence. Such
evidence should be collected prior to the examination of the mobile phone to avoid
contamination issues, unless the collection method will damage the device. Examiners
should wear gloves when handling the evidence.

The preparation phase
Once the mobile phone model is identified, the preparation phase involves research
regarding the particular mobile phone to be examined and the appropriate methods and
tools to be used for acquisition and examination. This is generally done based on the device
model, underlying operating system, its version, and so on. Also, choosing tools for
examination of a mobile device will be determined by factors such as the goal of the
examination, resources available, the type of cellular phone to be examined, and the
presence of any external storage capabilities.

Introduction to Mobile Forensics Chapter 1

[16]

The isolation phase
Mobile phones are, by design, intended to communicate via cellular phone networks,
Bluetooth, infrared, and wireless (Wi-Fi) network capabilities. When the phone is connected
to a network, new data is added to the phone through incoming calls, messages, and
application data, which modifies the evidence on the phone. Complete destruction of data is
also possible through remote access or remote wiping commands. For this reason, isolation
of the device from communication sources is important prior to the acquisition and
examination of the device. Network isolation can be done by placing the phone in radio
frequency shielding cloth and then putting the phone in airplane or flight mode. The
airplane mode disables a device's communication channels, such as cellular radio, Wi-Fi,
and Bluetooth. However, if the device is screen-locked, then this is not possible. Also, since
Wi-Fi is now available in airplanes, some devices now have Wi-Fi access enabled in airplane
mode. An alternate solution is isolation of the phone through the use of Faraday bags,
which block radio signals to or from the phone. Faraday bags contain materials that block
external static electrical fields (including radio waves). Thus, Faraday bags shield seized
mobile devices from external interference to prevent wiping and tracking. To work more
conveniently with the seized devices, Faraday tents and rooms also exist.

The processing phase
Once the phone has been isolated from communication networks, the actual processing of
the mobile phone begins. The phone should be acquired using a tested method that is
repeatable and is as forensically sound as possible. Physical acquisition is the preferred
method as it extracts the raw memory data and the device is commonly powered off during
the acquisition process. On most devices, the smallest number of changes occur to the
device during physical acquisition. If physical acquisition is not possible or fails, an attempt
should be made to acquire the filesystem of the mobile device. A logical acquisition should
always be obtained as it may contain only the parsed data and provide pointers to examine
the raw memory image. These acquisition methods are discussed in detail in later chapters.

The verification phase
After processing the phone, the examiner needs to verify the accuracy of the data extracted
from the phone to ensure that data has not been modified. The verification of the extracted
data can be accomplished in several ways.

Introduction to Mobile Forensics Chapter 1

[17]

Comparing extracted data to the handset data
Check whether the data extracted from the device matches the data displayed by the device.
The data extracted can be compared to the device itself or a logical report, whichever is
preferred. Remember, handling the original device may make changes to the only
evidence—the device itself.

Using multiple tools and comparing the results
To ensure accuracy, use multiple tools to extract the data and compare results.

Using hash values
All image files should be hashed after acquisition to ensure that data remains unchanged. If
filesystem extraction is supported, the examiner extracts the filesystem and then computes
hashes for the extracted files. Later, any individually extracted file hash is calculated and
checked against the original value to verify the integrity of it. Any discrepancy in a hash
value must be explainable (for example, the device was powered on and then acquired
again, thus the hash values are different).

The documenting and reporting phase
The forensic examiner is required to document throughout the examination process in the
form of contemporaneous notes relating to what was done during the acquisition and
examination. Once the examiner completes the investigation, the results must go through
some form of peer review to ensure that the data is checked and the investigation is
complete. The examiner's notes and documentation may include information such as the
following:

The examination start date and time
The physical condition of the phone
Photos of the phone and individual components
Phone status when received—turned on or off
Phone make and model
Tools used for the acquisition
Tools used for the examination
Data found during the examination
Notes from peer review

Introduction to Mobile Forensics Chapter 1

[18]

The presentation phase
Throughout the investigation, it is important to make sure that the information extracted
and documented from a mobile device can be clearly presented to any other examiner or to
a court. Creating a forensic report of data extracted from the mobile device during
acquisition and analysis is important. This may include data in both paper and electronic
formats. Your findings must be documented and presented in a manner that the evidence
speaks for itself when in court. The findings should be clear, concise, and repeatable.
Timeline and link analysis, features offered by many commercial mobile forensic tools, will
aid in reporting and explaining findings across multiple mobile devices. These tools allow
the examiner to tie together the methods behind the communication of multiple devices.

The archiving phase
Preserving the data extracted from the mobile phone is an important part of the overall
process. It is also important that the data is retained in a usable format for the ongoing court
process, for future reference, should the current evidence file become corrupt, and for
record-keeping requirements. Court cases may continue for many years before the final
judgment is arrived at, and most jurisdictions require that data be retained for long periods
of time for the purposes of appeals. As the field and methods advance, new methods for
pulling data out of a raw, physical image may surface, and then the examiner can revisit the
data by pulling a copy from the archives.

Practical mobile forensic approaches
Similar to any forensic investigation, there are several approaches that can be used for the
acquisition and examination/analysis of data from mobile phones. The type of mobile
device, the operating system, and the security setting generally dictate the procedure to be
followed in a forensic process. Every investigation is distinct with its own circumstances, so
it is not possible to design a single definitive procedural approach for all cases. The
following details outline the general approaches followed in extracting data from mobile
devices.

Introduction to Mobile Forensics Chapter 1

[19]

Overview of mobile operating systems
One of the major factors in the data acquisition and examination/analysis of a mobile phone
is the operating system. From low-end mobile phones to smartphones, mobile operating
systems have come a long way with a lot of features. Mobile operating systems directly
affect how the examiner can access the mobile device. For example, Android OS gives
terminal-level access whereas iOS does not give such an option. A comprehensive
understanding of the mobile platform helps the forensic examiner make sound forensic
decisions and conduct a conclusive investigation. While there is a large range of smart
mobile devices, with the demise of Blackberry, currently two main operating systems
dominate the market, namely Google Android and Apple iOS (followed by Windows
Phone at a distant third). More information can be found at: https:/ ​/​www. ​idc. ​com/ ​promo/
smartphone-​market- ​share/ ​os. This book covers forensic analysis of these three mobile
platforms. We will provide a brief overview of the leading mobile operating systems.

Android
Android is a Linux-based operating system, and it's a Google open source platform for
mobile phones. Android is the world's most widely used smartphone operating system.
Sources show that Apple's iOS stands second (https:/ ​/​www. ​idc. ​com/ ​promo/ ​smartphone-
market-​share/​os). Android has been developed by Google as an open and free option for
hardware manufacturers and phone carriers. This makes Android the software of choice for
companies who require a low-cost, customizable, lightweight operating system for their
smart devices without developing a new OS from scratch. Android's open nature has
further encouraged developers to build a large number of applications and upload them
onto Google Play. Later, end users can download the application from Android Market,
which makes Android a powerful operating system. It is estimated that Google Play Store
has 3.3 million apps at the time of writing this book. More details on Android are covered
in Chapter 7, Understanding Android.

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os

Introduction to Mobile Forensics Chapter 1

[20]

iOS
iOS, formerly known as the iPhone operating system, is a mobile operating system
developed and distributed solely by Apple Inc. iOS is evolving into a universal operating
system for all Apple mobile devices, such as iPad, iPod touch, and iPhone. iOS is derived
from OS X, with which it shares the Darwin foundation, and is therefore a Unix-like
operating system. iOS manages the device hardware and provides the technologies
required to implement native applications. iOS also ships with various system applications,
such as Mail and Safari, which provide standard system services to the user. iOS native
applications are distributed through AppStore, which is closely monitored by Apple. More
details about iOS are covered in Chapter 2, Understanding the Internals of iOS Devices.

Windows Phone
Windows Phone is a proprietary mobile operating system developed by Microsoft for
smartphones and pocket PCs. It is the successor to Windows Mobile and primarily aimed at
the consumer market rather than the enterprise market. The Windows Phone OS is similar
to the Windows desktop OS, but it is optimized for devices with a small amount of storage.
Windows Phone basics and forensic techniques are discussed in Chapter 12, Windows Phone
Forensics.

Mobile forensic tool leveling system
Mobile phone forensic acquisition and analysis involves manual effort and the use of
automated tools. There are a variety of tools that are available for performing mobile
forensics. All the tools have their pros and cons, and it is fundamental that you understand
that no single tool is sufficient for all purposes. So, understanding various types of mobile
forensic tools is important for forensic examiners.

Introduction to Mobile Forensics Chapter 1

[21]

When identifying the appropriate tools for the forensic acquisition and analysis of mobile
phones, a mobile device forensic tool classification system developed by Sam
Brothers (shown in the following figure) comes in handy for examiners:

Cellular phone tool leveling pyramid (Sam Brothers, 2009)

The objective of the mobile device forensic tool classification system is to enable an
examiner to categorize forensic tools based on the examination methodology of the tool.
Starting at the bottom of the classification and working upward, the methods and the tools
generally become more technical, complex, and forensically sound, and require longer
analysis times. There are pros and cons of performing an analysis at each layer. The forensic
examiner should be aware of these issues and should only proceed with the level of
extraction that is required. Evidence can be destroyed completely if the given method or
tool is not properly utilized. This risk increases as you move up in the pyramid. Thus,
proper training is required to obtain the highest success rate in data extraction from mobile
devices.

Each existing mobile forensic tool can be classified under one or more of the five levels. The
following sections contain a detailed description of each level.

Introduction to Mobile Forensics Chapter 1

[22]

Manual extraction
The manual extraction method involves simply scrolling through the data on the device and
viewing the data on the phone directly through the use of the device's keypad or
touchscreen. The information discovered is then photographically documented. The
extraction process is fast and easy to use, and it will work on almost every phone. This
method is prone to human error, such as missing certain data due to unfamiliarity with the
interface. At this level, it is not possible to recover deleted information and grab all the data.
There are some tools, such as Project-A-Phone, that have been developed to aid an examiner
to easily document a manual extraction. However, this might also result in the modification
of data. For example, viewing an unread SMS can mark it as read.

Logical extraction
Logical extraction involves connecting the mobile device to forensic hardware or to a
forensic workstation via a USB cable, a RJ-45 cable, infrared, or Bluetooth. Once connected,
the computer initiates a command and sends it to the device, which is then interpreted by
the device processor. Next, the requested data is received from the device's memory and
sent back to the forensic workstation. Later, the examiner can review the data. Most of the
forensic tools currently available work at this level of the classification system. The
extraction process is fast, easy to use, and requires little training for the examiners. On the
flip side, the process may write data to the mobile and might change the integrity of the
evidence. In addition, deleted data is not generally accessible with this procedure.

Hex dump
A hex dump, also referred to as a physical extraction, is achieved by connecting the device
to the forensic workstation and pushing unsigned code or a bootloader into the phone and
instructing the phone to dump memory from the phone to the computer. Since the resulting
raw image is in binary format, technical expertise is required to analyze it. The process is
inexpensive, provides more data to the examiner, and allows the recovery of deleted files
from the device-unallocated space on most devices.

Introduction to Mobile Forensics Chapter 1

[23]

Chip-off
Chip-off refers to the acquisition of data directly from the device's memory chip. At this
level, the chip is physically removed from the device and a chip reader or a second phone is
used to extract data stored on it. This method is more technically challenging, as a wide
variety of chip types are used in mobiles. The process is expensive and requires hardware-
level knowledge as it involves the desoldering and heating of the memory chip. Training is
required to successfully perform a chip-off extraction. Improper procedures may damage
the memory chip and render all data unsalvageable. When possible, it is recommended that
the other levels of extraction are attempted prior to chip-off, since this method is destructive
in nature. Also, the information that comes out of memory is in a raw format and has to be
parsed, decoded, and interpreted. The chip-off method is preferred in situations where it is
important to preserve the state of memory exactly as it exists on the device. It is also the
only option when a device is damaged but the memory chip is intact.

The chips on the device are often read using the Joint Test Action Group (JTAG) method.
The JTAG method involves connecting to Test Access Ports (TAPs) on a device and
instructing the processor to transfer the raw data stored on memory chips. The JTAG
method is generally used with devices that are operational but inaccessible using standard
tools. Both of these techniques also work even when the device is screen-locked.

Micro read
The micro read process involves manually viewing and interpreting data seen on the
memory chip. The examiner uses an electron microscope and analyzes the physical gates on
the chip and then translates the gate status to 0s and 1s to determine the resulting ASCII
characters. The whole process is time-consuming and costly, and it requires extensive
knowledge and training on memory and the filesystem. Due to the extreme technicalities
involved in micro read, it would be only attempted for high-profile cases equivalent to a
national security crisis after all other level extraction techniques have been exhausted. The
process is rarely performed and is not well-documented at this time. Also, there are
currently no commercial tools available to perform a micro read.

Introduction to Mobile Forensics Chapter 1

[24]

Data acquisition methods
Data acquisition is the process of imaging or otherwise extracting information from a digital
device and its peripheral equipment and media. Acquiring data from a mobile phone is not
as simple as a standard hard drive forensic acquisition. The following points break down
the three types of forensic acquisition methods for mobile phones—physical, logical, and
manual. These methods may have some overlap with a couple of levels discussed in the
mobile forensics tool leveling system. The amount and type of data that can be collected
will vary depending on the type of acquisition method being used. While we cover these
methods in detail in the upcoming chapters, the following is a brief description of them.

Physical acquisition
Physical acquisition of a mobile device is nothing but a bit-by-bit copy of the physical
storage. Physical extraction acquires information from the device by direct access to the
flash memory. Flash memory is a non-volatile memory and is primarily used in memory
cards and USB flash drives as solid-state storage. The process creates a bit-for-bit copy of an
entire filesystem, similar to the approach taken in computer forensic investigations. A
physical acquisition is able to acquire all of the data present on a device, including the
deleted data and access to unallocated space on most devices.

Logical acquisition
Logical acquisition is about extracting the logical storage objects, such as files and
directories, that reside on the filesystem. Logical acquisition of mobile phones is performed
using the device manufacturer application programming interface to synchronize the
phone's contents with a computer. Many of the forensic tools perform a logical acquisition.
It is much easier for a forensic tool to organize and present the data extracted through
logical acquisition. However, the forensic analyst must understand how the acquisition
occurs and whether the mobile is modified in any way during the process. Depending on
the phone and forensic tools used, all or some of the data is acquired. A logical acquisition
is easy to perform and only recovers the files on a mobile phone and does not recover data
contained in unallocated space.

Introduction to Mobile Forensics Chapter 1

[25]

Manual acquisition
With mobile phones, physical acquisition is usually the best option, and logical acquisition
is the second-best option. Manual extraction should be the last option when performing the
forensic acquisition of a mobile phone. Both logical and manual acquisition can be used to
validate findings in the physical data. During manual acquisition, the examiner utilizes the
user interface to investigate the contents of the phone's memory. The device is used
normally through keypad or touchscreen and menu navigation, and the examiner takes
pictures of each screen's contents. Manual extraction introduces a greater degree of risk in
the form of human error, and there is a chance of deleting the evidence. Manual acquisition
is easy to perform and only acquires the data that appears on a mobile phone.

Potential evidence stored on mobile phones
The range of information that can be obtained from mobile phones is detailed in this
section. Data on a mobile phone can be found in a number of locations--SIM card, external
storage card, and phone memory. In addition, the service provider also stores
communication-related information. The book primarily focuses on data acquired from the
phone memory. Mobile device data extraction tools recover data from the phone's memory.
Even though data recovered during a forensic acquisition depends on the mobile model, in
general, the following data is common across all models and useful as evidence. Note that
most of the following artifacts contain date- and timestamps:

Address book: This contains contact names, phone numbers, email addresses,
and so on
Call history: This contains dialed, received, missed calls, and call duration
SMS: This contains sent and received text messages
MMS: This contains media files such as sent and received photos and videos
E-mail: This contains sent, drafted, and received email messages
Web browser history: This contains the history of websites that were visited
Photos: This contains pictures that were captured using the mobile phone
camera, those downloaded from the internet, and the ones transferred from other
devices

Introduction to Mobile Forensics Chapter 1

[26]

Videos: This contains videos that are captured using the mobile camera, those
downloaded from the internet, and the ones transferred from other devices
Music: This contains music files downloaded from the internet and those
transferred from other devices
Documents: This contains documents created using the device's applications,
those downloaded from the internet, and the ones transferred from other devices
Calendar: This contains calendar entries and appointments
Network communication: This contains GPS locations
Maps: This contains places the user visited, looked-up directions, and searched
and downloaded maps
Social networking data: This contains data stored by applications, such as
Facebook, Twitter, LinkedIn, Google+, and WhatsApp
Deleted data: This contains information deleted from the phone

Examination and analysis
This is the ultimate step in the investigation, which aims to uncover data that is present on
the device. Examination is done by applying well-tested and scientific methods to
conclusively establish the results. The analysis phase is focused on separating relevant data
from the rest and to probe data which is of value to the underlying case. The examination
process starts with a copy of the evidence acquired using some of the techniques described
above, which will be covered in detail in the next chapters. Examination and analysis using
third-party tools is generally performed by importing the device's memory dump into a
mobile forensics tool which will automatically retrieve the results. Understanding the case
is also crucial to perform a targeted analysis of the data. For example, a case about child
pornography may require focusing on all of the images present on the device rather than
looking at other artifacts.

Introduction to Mobile Forensics Chapter 1

[27]

It is important that the examiner has fair knowledge of how the forensic tools which are
used for examination work. Proficient use of the features and options available in the tool
will drastically speed up the examination process. Sometimes, due to programming flaws in
the software, the tool may not be able to recognize or convert bits into a format
comprehensible by the examiner. Hence, it is crucial that the examiner has the necessary
skills to identify such situations and use alternate tools or software to construct the results.
In some cases, the individual may purposefully tamper with the device information or may
delete/hide some of the crucial data. Forensic analysts should understand the limitations of
the tool and sometimes compensate for them to achieve the best possible results. To analyze
the extracted data, the US Department of Justice has published the following suggestions
(referenced directly from: https://www.ncjrs.gov/pdffiles1/nij/199408.pdf) in the
publication Forensic Examination of Digital Evidence - A Guide for Law Enforcement:

Ownership and possession: Identify the individuals who created, modified, or
accessed a file, and the ownership and possession of questioned data by placing
the subject with the device at a particular time and date, locating files of interest
in non-default locations, recovering passwords that indicate possession, and
identifying contents of files that are specific to a user.
Application and file analysis: Identify information relevant to the investigation
by examining file content, correlating files to installed applications, identifying
relationships between files (for example, email files to email attachments),
determining the significance of unknown file types, examining system
configuration settings, and examining file metadata (for example, documents
containing authorship identification).
Timeframe analysis: Determine when events occurred on the system to associate
usage with an individual by reviewing any logs present and the date-/timestamps
in the filesystem, such as the last modified time. Besides call logs, the date/time
and content of messages and email can prove useful. Such data can also be
corroborated with billing and subscriber records kept by the service provider.
Data hiding analysis: Detect and recover hidden data that may indicate
knowledge, ownership, or intent by correlating file headers to file extensions to
show intentional obfuscation; gaining access to password-protected, encrypted,
and compressed files; and gaining access to steganographic information detected
in images.

https://www.ncjrs.gov/pdffiles1/nij/199408.pdf

Introduction to Mobile Forensics Chapter 1

[28]

Rules of evidence
Courtrooms rely more and more on the information inside a mobile phone as vital
evidence. Prevailing evidence in court requires a good understanding of the rules of
evidence. Mobile forensics is a relatively new discipline and laws dictating the validity of
evidence are not widely known and they also differ from country to country. However,
there are five general rules of evidence that apply to digital forensics and need to be
followed in order for evidence to be useful. Ignoring these rules makes evidence
inadmissible, and your case could be thrown out. These five rules are: admissible, authentic,
complete, reliable, and believable:

Admissible: This is the most basic rule and a measure of evidence validity and
importance. The evidence must be preserved and gathered in such a way that it
can be used in court or elsewhere. Many errors can be made that could cause a
judge to rule a piece of evidence as inadmissible. For example, evidence that is
gathered using illegal methods is commonly ruled inadmissible.
Authentic: The evidence must be tied to the incident in a relevant way to prove
something. The forensic examiner must be accountable for the origin of the
evidence.
Complete: When evidence is presented, it must be clear and complete, and
should reflect the whole story. It is not enough to collect evidence that just shows
one perspective of the incident. Presenting incomplete evidence is more
dangerous than not providing any evidence at all, as it could lead to a different
judgment.
Reliable: Evidence collected from the device must be reliable. This depends on
the tools and methodology used. The techniques used and evidence collected
must not cast doubt on the authenticity of the evidence. If the examiner used
some techniques that cannot be reproduced, the evidence is not considered unless
they were directed to do so. This would include possible destructive methods
such as chip-off extraction.
Believable: A forensic examiner must be able to explain, with clarity and
conciseness, what processes they used and the way the integrity of the evidence
was preserved. The evidence presented by the examiner must be clear, easy to
understand, and believable by the jury.

Introduction to Mobile Forensics Chapter 1

[29]

Good forensic practices
Good forensic practices apply to the collection and preservation of evidence. Following
good forensic practices ensures that evidence will be accepted in a court as being authentic
and accurate. Modification of evidence, either intentionally or accidentally, can affect the
case. So, understanding the best practices is critical for forensic examiners.

Securing the evidence
With advanced smartphone features such as Find My iPhone and remote wipes, securing a
mobile phone in a way that it cannot be remotely wiped is of great importance. Also, when
the phone is powered on and has service, it constantly receives new data. To secure the
evidence, use the right equipment and techniques to isolate the phone from all networks.
With isolation, the phone is prevented from receiving any new data that would cause active
data to be deleted. Depending on the case, sometimes traditional forensic measures, such as
fingerprints or DNA testing, may also need to be applied to establish a connection between
a mobile device and its owner. If the device is not handled in a secure manner, physical
evidence may be unintentionally tampered with and may be rendered useless. It is also
important to collect any peripherals, associated media, cables, power adapters, and other
accessories that are present at the scene. At the scene of investigation, if the device is found
to be connected to a personal computer, pulling it directly would stop the data transfer.
Instead, it is recommended to capture the memory of the personal computer before pulling
the device, as this contains significant details in many cases.

Preserving the evidence
As evidence is collected, it must be preserved in a state that is acceptable in court. Working
directly on the original copies of evidence might alter it. So, as soon as you recover a raw
disk image or files, create a read-only master copy and duplicate it. In order for evidence to
be admissible, there must be a method to verify that the evidence presented is exactly the
same as the original collected. This can be accomplished by creating a forensic hash value of
the image. A forensic hash is used to ensure the integrity of an acquisition by calculating a
cryptographically strong and non-reversible value of the image/data. After duplicating the
raw disk image or files, compute and verify the hash values for the original and the copy to
ensure that the integrity of the evidence is maintained. Any changes in hash values should
be documented and explainable. All further processing or examination should be
performed on copies of the evidence. Any use of the device might alter the information
stored on the handset. So, only perform the tasks that are absolutely necessary.

Introduction to Mobile Forensics Chapter 1

[30]

Documenting the evidence and changes
Whenever possible, a record of all visible data should be created. It is recommended to
photograph the mobile device along with any of the other media found, such as cables,
peripherals, and so on. This will be helpful in case questions arise later on about the
environment. Do not touch or lay hands on the mobile device when photographing it.
Ensure that you document all the methods and tools that are used to collect and extract the
evidence. Detail your notes so that another examiner can reproduce them. Your work must
be reproducible; if not, a judge may rule it inadmissible. It's important to document the
entire recovery process, including all the changes made during the acquisition and
examination. For example, if the forensic tool used for the data extraction sliced up the disk
image to store it, this must be documented. All changes to the mobile device, including
power cycling and syncing, should be documented in your case notes.

Reporting
Reporting is the process of preparing a detailed summary of all the steps taken and
conclusions reached as part of the examination. Reporting should include details about all
the important actions performed by the examiner, results of the acquisition, and any
inferences drawn from the results. Most of the forensic tools come with built-in reporting
features which will autogenerate the reports while providing scope for customization at the
same time. In general, the report may contain the following details:

Details of the reporting agency
Case identifier
Forensic investigator
Identity of the submitter
Date of evidence receipt
Details of the device seized for examination including serial number, make, and
model
Details of the equipment and tools used in the examination
Description of steps taken during examination
Chain of custody documentation
Details of findings or issues identified
Evidence recovered during the examination, ranging from chat messages,
browser history, and call logs to deleted messages, and so on

Introduction to Mobile Forensics Chapter 1

[31]

Any images captured during the examination
Examination and analysis information
Report conclusion

Summary
Mobile devices store a wide range of information, such as SMS, call logs, browser history,
chat messages, location details, and so on. Mobile device forensics includes many
approaches and concepts that fall outside the boundaries of traditional digital forensics.
Extreme care should be taken while handling the device, right from the evidence intake
phase to the archiving phase. Examiners responsible for mobile devices must understand
the different acquisition methods and the complexities of handling the data during analysis.
Extracting data from a mobile device is half the battle. The operating system, security
features, and type of smartphone will determine the amount of access you have to the data.
It is important to follow sound forensic practices and make sure that the evidence is
unaltered during the investigation.

The next chapter will provide an insight into iOS forensics. You will learn about the
filesystem layout, security features, and the way files are stored on an iOS device.

2
Understanding the Internals of

iOS Devices
In October 2017 alone, Apple sold more than 170,000 iPhones and more than 33,000 iPads
according to released sales records. While iOS is the leading operating system for tablets
worldwide, Android continues to be the leading operating system for smartphones
worldwide. Regardless of the statistics, if you are a forensic examiner, the chances are that
you will need to conduct an examination of an iOS device.

In order to perform a forensic examination of an iOS device, the examiner must understand
the internal components and inner workings of that device. Developing an understanding
of the underlying components of a mobile device will help the forensic examiner
understand the criticalities involved in the forensic process, including what data can be
acquired, where the data is stored, and what methods can be used to access the data from
that device. So, before we delve into the examination of iOS devices, it is necessary to know
the different models that exist and their internal components. Throughout this book, we
will perform forensic acquisition and analysis on iOS devices, including the iPhone, iPad,
and Apple Watch.

The goal of this chapter is to introduce you to the iOS device technology. We will cover
details that may often get overlooked, but will help you during your forensic investigation.
You must understand the different iOS devices and how data is stored on the devices before
you can successfully extract it.

In this chapter, we will cover the following topics in detail:

iPhone models and hardware
iPad models and hardware
Apple Watch models and hardware

Understanding the Internals of iOS Devices Chapter 2

[33]

iOS overview
HFS Plus overview
APFS overview
Jailbreaking

iPhone models
The iPhone is among the most popular smartphones on the market. Apple released the first-
generation iPhone in June 2007. Ever since the first release, the iPhone has gained a lot of
popularity due to its advanced functionality and usability. The introduction of the iPhone
has redefined the entire world of mobile computing. Consumers started looking for faster
and more efficient phones. Various iPhone models exist now, with different features and
storage capabilities to serve consumer requirements.

The iPhones released since the second edition of Practical Mobile Forensics, the iPhone SE, 7,
7 Plus, 8, 8 Plus, and X, remain difficult when dealing with physical forensic acquisition
methods. Just like the devices released since the iPhone 5, there is no method or tool
available to physically recover data from these devices, unless they are jailbroken.
However, the filesystem and a logical acquisition can be obtained if the iPhone is unlocked.
Acquisition methods for data extraction are available and will be discussed in Chapter 3,
Data Acquisition from iOS Devices, and Chapter 4, Data Acquisition from iOS Backups.

Identifying the correct hardware model
Before examining an iPhone, it is necessary to identify the correct hardware model and the
firmware version installed on the device. Knowing the iPhone's details helps you to
understand the criticalities and possibilities of obtaining evidence from the iPhone. For
example, in many cases, the device passcode is required in order to obtain the filesystem or
logical image. Even if the device is supported physically, the passcode is needed to decrypt
artifacts such as emails and passwords. Depending on the iOS version, device model, and
passcode complexity, it may be possible to obtain the device passcode using a brute-force
attack.

There are various ways to identify the hardware of a device. The easiest way to identify the
hardware of a device is by observing the model number displayed on the back of the
device. Apple's knowledge base articles can be helpful for this purpose. Details on
identifying iPhone models can be found at https:/ ​/​support. ​apple. ​com/ ​en-​in/ ​HT201296.

https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296
https://support.apple.com/en-in/HT201296

Understanding the Internals of iOS Devices Chapter 2

[34]

The firmware version of an iPhone can be found by accessing the Settings option and then
navigating to General | About | Version, as shown in the following screenshot. The
purpose of the firmware is to enable certain features and assist with the general functioning
of the device:

The iPhone About screen, displaying firmware version 11.0.2 (15A421)

Alternatively, the ideviceinfo command-line tool available in the libimobiledevice
software library (http:/ ​/ ​www. ​libimobiledevice. ​org/ ​) can be used to identify the iPhone
model and its iOS version. The library allows you to communicate with an iPhone even if
the device is locked by a passcode. The easiest way to get it is to use Homebrew, a free and
open source software package management system for Apple's macOS operating system.

http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/
http://www.libimobiledevice.org/

Understanding the Internals of iOS Devices Chapter 2

[35]

To obtain the iPhone model and its iOS version information on macOS 10.12.6, follow these
steps:

Open the Terminal application.1.
From the command line, run the following command to download and2.
install Homebrew:

$ ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"
< /dev/null 2> /dev/null

Once it's installed, you are ready to install the libimobiledevice library:3.

$ brew install libimobiledevice

Connect the iPhone to your Mac workstation using a USB cable and run the4.
ideviceinfo command with the -s option:

$ ideviceinfo -s

The output of the ideviceinfo command displays the iPhone identifier, internal
name, and the iOS version, as shown here:

Output from libimobiledevice displaying firmware version 11.0.2 (15A421)

Understanding the Internals of iOS Devices Chapter 2

[36]

Free tools, such as iExplorer and others, will provide access to similar iOS device
information on a Windows PC, as shown in the following screenshot. Both Mac and
Windows methods for recovering iPhone device information will work on iPad devices as
well. Here, iExplorer is being used to obtain device information from the iPhone:

iExplorer displaying iPhone identifiers

Every release of the iPhone comes with improved or newly-added features. As
previously stated in this chapter, knowing the iPhone's details helps you understand the
criticalities and possibilities of obtaining evidence from the iPhone. The examiner must
know the model of the device to ensure that their tools and methodologies support that
iPhone. They must determine the internal storage size of the iPhone to ensure that the
evidence container is large enough for the entire forensic image. Most tools will not alert the
examiner that there is not enough disk space on the evidence drive until space has run out.
This will waste time and force the examiner to acquire the device a second time. Finally, the
network capabilities of the device must be noted, so the examiner can properly isolate the
device to prevent remote access or wiping during examination. This will be discussed
further in Chapter 3, Data Acquisition from iOS Devices.

Understanding the Internals of iOS Devices Chapter 2

[37]

The following table shows the specifications and features of legacy iPhone models:

Specifications of legacy iPhone models

Understanding the Internals of iOS Devices Chapter 2

[38]

The later iPhone releases and features are shown in the following table:

One of the major changes in the iPhone 5, iPhone 5C, and iPhone 5S is the Lightning
connector, which is used to charge and synchronize the device with the computer. Devices
prior to the iPhone 5 use a 30-pin USB dock connector, whereas the newer iPhones use an 8-
pin Lightning connector.

Understanding the Internals of iOS Devices Chapter 2

[39]

The most recent iPhone releases and features are shown in the following tables:

Understanding the Internals of iOS Devices Chapter 2

[40]

The iPhone models released after the second edition of the book are shown in the following
table:

Again, some familiarity with iPhone device hardware will aid the examiner in determining
how to handle the device during a forensic investigation. Certain models enforce full disk
encryption, while older models do not. Encrypted devices require additional steps during
acquisition if access is even possible. The examiner must be prepared for all hurdles they
may be required to clear during the acquisition and analytical stages of the investigation. In
addition, knowing the capabilities that the iPhone has, and the initial and current OS
version, makes a difference in the data you will be able to recover from the device. Apple is
not consistent with data storage locations across iOS versions. Thus, the examiner must
know the original version installed when the phone was first in use to ensure that the
forensic tools do not overlook data that could aid in the investigation. Topics such as iOS
upgrades will be discussed in Chapter 5, iOS Data Analysis and Recovery.

Understanding the Internals of iOS Devices Chapter 2

[41]

iPhone hardware
The iPhone is a collection of modules, chips, and electronic components from different
manufacturers. Due to the complexities of the iPhone, the list of hardware components is
extensive and each device should be researched for internal components.

The following images show the internals of the iPhone 8. The images were taken after
dismantling the iPhone 8. Internal images for all iPhones can be found in the teardown
section at https:/ ​/​www. ​ifixit. ​com/ ​Device/ ​iPhone.

This is the front of the dismantled iPhone 8:

The iPhone 8 teardown image—front (https://www.ifixit.com/Teardown/iPhone+8+Teardown/97481)

https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone
https://www.ifixit.com/Device/iPhone

Understanding the Internals of iOS Devices Chapter 2

[42]

This is the back of the dismantled iPhone 8:

The iPhone 8 teardown image—back (https://www.ifixit.com/Teardown/iPhone+8+Teardown/97481)

iPad models
The Apple iPhone changed the way cell phones are produced and used. Similarly, the iPad,
a version of the tablet computer introduced in January 2010, squashed the sales of
notebooks. With the iPad, individuals can shoot videos, take photos, play music, read
books, browse the internet, and do much more. Various iPad models exist now, with
different features and storage capabilities. Details on identifying iPad models can be found
at https:/​/​support. ​apple. ​com/ ​en- ​in/ ​HT201471.

https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471
https://support.apple.com/en-in/HT201471

Understanding the Internals of iOS Devices Chapter 2

[43]

The most recent iPad models are listed in the following table:

As with the iPhone, not all versions of the iPad are supported for physical acquisition. In
addition, Apple has changed data storage locations in iOS versions, which affects the iPad
devices as well. The examiner must be aware of the different models, the released and
currently installed iOS version, storage capability, network access vectors, and more.

Every release of the iPad comes with improved or newly-added features. The following
table shows the specifications and features of the most recent iPad models:

Understanding the Internals of iOS Devices Chapter 2

[44]

Understanding the iPad hardware
One of the key factors of the success of Apple iOS devices is the proper selection of its
hardware components. Just like the iPhone, the iPad is also a collection of modules, chips,
and electronic components from different manufacturers. Internal images for all iPads can
be found in the teardown section of https:/ ​/​www. ​ifixit. ​com/ ​Device/ ​iPad.

The following images show the internals of the iPad Pro. The images were taken after
dismantling the iPad Pro cellular model and were obtained from https:/ ​/​www. ​ifixit. ​com/
Teardown/​iPad+Pro+10. ​5- ​Inch+Teardown/ ​92534:

The iPad Pro teardown image (https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534)

The following image shows the other side of the iPad Pro:

The iPad Pro teardown image (https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534)

https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Device/iPad
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534
https://www.ifixit.com/Teardown/iPad+Pro+10.5-Inch+Teardown/92534

Understanding the Internals of iOS Devices Chapter 2

[45]

Apple Watch models
The Apple Watch was released in spring 2015. This smartwatch enables users to sync
iPhone data to the watch and leverage the watch as a way to interact with the iPhone and as
a singular device. The Apple Watch enables users to answer calls, send and respond to SMS,
iMessage and email, access third-party applications, use Apple maps, and more. The Apple
Watch can only be paired with an iPhone capable of running iOS 8.2 or later, not an iPad.
The first release of Watch OS required the watch to be within Bluetooth range of the iPhone
for full functionality, but Watch OS 2.X allows the watch to function independently on Wi-
Fi. The Apple Watch 3 was first introduced on September 12, 2017 and released on
September 22 with iPhone 8. It requires iOS 11 or later running on an iPhone 5S or newer.
The third series has built-in LTE cellular connectivity and allows both voice and data
communication:

The features of the current Apple Watch are listed here:

Understanding the Internals of iOS Devices Chapter 2

[46]

Understanding the Apple Watch hardware
While there are two sizes of the Apple Watch, the hardware is similar for each. Apple has
not disclosed the complete Watch specifications, which forces us to rely on the little we
currently know.

The following image shows the internals of the Apple Watch. The images were taken after
dismantling the Apple Watch, and were obtained from https:/ ​/ ​www.​ifixit. ​com/
Teardown/​Apple+Watch+Series+3+Teardown/ ​97521:

Apple Watch Series 3 (https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521)

https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521
https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521

Understanding the Internals of iOS Devices Chapter 2

[47]

The following image shows the reverse side of the Apple Watch Series 3:

Apple Watch Series 3 (https://www.ifixit.com/Teardown/Apple+Watch+Series+3+Teardown/97521)

Understanding the Internals of iOS Devices Chapter 2

[48]

The filesystem
To better understand the forensic process of an iOS device, it is good to know about the
filesystem that is used. The filesystem used in the iPhone and other Apple iOS devices is
HFSX, a variation of HFS Plus with one major difference. HFSX is case-sensitive whereas
HFS Plus is case-insensitive. Other differences will be discussed later in this chapter. OS
X uses HFS Plus by default and iOS uses HFSX. Apple File System (APFS) was
introduced in June 2016 as a replacement for HFS+, and released for iOS devices with the
release of iOS 10.3, and for macOS devices with the release of macOS 10.13.

The HFS Plus filesystem
In 1996, Apple developed a new filesystem, Hierarchical File System (HFS), to
accommodate the storage of large datasets. In a HFS filesystem, the storage medium is
represented as volumes. HFS volumes are divided into logical blocks of 512 bytes. The
logical blocks are numbered from first to last on a given volume and will remain static with
the same size as physical blocks, that is, 512 bytes. These logical blocks are grouped together
into allocation blocks, which are used by the HFS filesystem to track data in a more efficient
way. HFS uses a 16-bit value to address allocation blocks, which limits the number of
allocation blocks to 65,535. To overcome the inefficient allocations of disk space and some of
the limitations of HFS, Apple introduced the HFS Plus filesystem (http:/ ​/​dubeiko. ​com/
development/​FileSystems/ ​HFSPLUS/ ​tn1150. ​html).

The HFS Plus filesystem was designed to support larger file sizes. HFS volumes are divided
into sectors that are usually 512 bytes in size. These sectors are grouped together into
allocation blocks. The number of allocation blocks depends on the total size of the volume.
HFS Plus uses block addresses of 32 bits to address allocation blocks. HFS Plus uses
journaling by default. Journaling is the process of logging every transaction to the disk,
which helps prevent filesystem corruption. The key characteristics of the HFS Plus
filesystem are: efficient use of disk space, Unicode support for filenames, support for name
forks, file compression, journaling, dynamic resizing, dynamic defragmentation, and an
ability to boot on operating systems other than macOS.

http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html

Understanding the Internals of iOS Devices Chapter 2

[49]

The HFS Plus volume
The HFS Plus volume contains a number of internal structures to manage the organization
of data. These structures include a header, an alternate header, and five special files: an
allocation file, an extents overflow file, a catalog file, an attributes file, and a startup file.
Among the five files, three files (the extents overflow file, the catalog file, and the attribute
file) use a B-tree structure, a data structure that allows data to be efficiently searched,
viewed, modified, or removed. The HFS Plus volume structure is shown in the following
figure:

The HFS Plus volume structure

Understanding the Internals of iOS Devices Chapter 2

[50]

The volume structure is described as follows:

1024 bytes: This is reserved for boot load information.
Volume header: This stores volume information, such as the size of allocation
blocks, a timestamp of when the volume was created, and metadata about each of
the five special files.
Allocation file: This file is used to track which allocation blocks are in use by the
system. The file format consists of one bit for every allocation block. If the bit is
set, the block is in use. If it is not set, the block is free.
Extents Overflow file: This file records the allocation blocks that are allocated
when the file size exceeds eight blocks, which helps in locating the actual data
when referred. Bad blocks are also recorded in the file.
Catalog file: This file contains information about the hierarchy of files and
folders, which is used to locate any file and folder within the volume.
Attribute file: This file contains inline data attribute records, fork data attribute
records, and extension attribute records.
Startup file: This file holds the information needed to assist in booting a system
that does not have HFS Plus support.
Alternate Volume header: This is a backup of the volume header, and it is
primarily used for disk repair.
512 bytes: This is reserved for use by Apple, and it is used during the
manufacturing process.

The APFS filesystem
APFS is a new filesystem for iOS, macOS, tvOS, and watchOS. It is a 64-bit filesystem and
supports over 9 quintillion files on a single volume. Here is the list of its main features:

Clones: Instantaneous copies of files or directories. Modifications are written
elsewhere and continue to share the unmodified blocks; changes are saved as
deltas of the cloned file.
Snapshots: Points-in-time, read-only instances of the filesystem.
Space sharing: Allows multiple filesystems to share the same underlying free
space on a physical volume.

Understanding the Internals of iOS Devices Chapter 2

[51]

Encryption: There are three modes:
No encryption
Single-key encryption
Multi-key encryption with per-file keys for file data and a separate
key for sensitive metadata

Depending on the hardware, AES-XTS or AES-CBC encryption mode is used.

Crash protection: A novel copy-on-write metadata scheme, it's used to ensure
that filesystem updates are crash-protected.
Sparse files: Allow the logical size of files to be greater than the physical space
they occupy on disk.
Fast directory sizing: Quickly computes the total space used by a directory
hierarchy, allowing it to be updated as the hierarchy evolves.

The APFS structure
So, APFS is structured in a single container, which may contain one or more volumes. The
APFS structure is presented in the following figure:

APFS structure overview (https://blog.cugu.eu/post/apfs/)

Each filesystem structure in APFS starts with a block header. The block header starts with a
checksum (Fletcher's checksum algorithm is used) for the whole block, and also contains the
copy-on-write version of the block, the block ID, and the block type.

Understanding the Internals of iOS Devices Chapter 2

[52]

The container superblock contains information on the block size, the number of blocks, and
pointers to the space manager for this task, the block IDs of all volumes, and a pointer to a
block map B-tree (contains entries for each volume with its ID and offset).

Nodes are used for storing different kinds of entries. They can be part of a B-tree or exist on
their own, and can either contain flexible or fixed-sized entries.

The space manager manages allocated blocks in the APFS container, and stores the number
of free blocks and a pointer to the allocation info file.

The allocation info file stores the allocation file's length, version and the offset.

B-trees manage multiple nodes, and contain the offset of the root node.

A volume superblock contains the name of the volume, an ID and a timestamp.

As for allocation files, they are simple bitmaps, and do not have a block header and type
ID.

Disk layout
By default, the filesystem is configured as two logical disk partitions: system (root or
firmware) partition and user data partition.

The system partition contains the OS and all of the preloaded applications used with the
iPhone. The system partition is mounted as read-only unless an OS upgrade is in progress
or the device is jailbroken. The partition is updated only when a firmware upgrade is
performed on the device. During this process, the entire partition is formatted by iTunes
without affecting any of the user data. The system partition takes only a small portion of
storage space, normally between 0.9 GB and 2.7 GB, depending on the size of the NAND
drive. As the system partition was designed to remain in factory state for the entire life of
the iPhone, there is typically little useful evidentiary information that can be obtained from
it. If the iOS device is jailbroken, files containing information regarding the jailbreak and
user data may be resident on the system partition. Jailbreaking an iOS device allows the
user root access to the device, but voids the manufacturer warranty. Jailbreaking will be
discussed later in this chapter.

Understanding the Internals of iOS Devices Chapter 2

[53]

The user data partition contains all user-created data, ranging from music and contacts to
third-party application data. The user data partition occupies most of the NAND memory
and is mounted at /private/var on the device. Most of the evidentiary information can be
found in this partition. During a physical acquisition, both the user data and system
partitions should be captured and saved as a .dmg or .img file. Most Windows tools and
acquisition methods will create an .img file, while macOS X tools and acquisition methods
will create a .dmg file. Both of the output image files are supported by most commercial
forensic analysis tools.

These raw image files can be mounted as read-only for forensic analysis, which is covered
in detail in Chapter 3, Data Acquisition from iOS Devices and Chapter 5, iOS Data Analysis
and Recovery.

iPhone operating system
iOS is Apple's most advanced and feature-rich proprietary mobile operating system. It was
released with the first generation of the iPhone. When introduced, it was named iPhone OS,
and it was later renamed iOS to reflect the unified nature of the operating system that
powers all Apple iOS devices, such as the iPhone, iPod touch, iPad, and Apple TV. iOS is
derived from core OS X technologies and streamlined to be compact and efficient for mobile
devices.

It utilizes a multi-touch interface, where simple gestures are used to operate and control the
device, such as swiping your finger across the screen to move to the successive page or
pinching your fingers to zoom. In simple terms, iOS assists with the general functioning of
the device. iOS is really macOS X with the following significant differences:

The architecture for which the kernel and binaries are compiled is ARM-based
rather than Intel x86_64
The OS X kernel is open source, whereas the iOS kernel remains closed
Memory management is much tighter
The system is hardened and does not allow access to the underlying APIs

Understanding the Internals of iOS Devices Chapter 2

[54]

The iOS architecture
iOS acts as an intermediary between the underlying hardware components and the
applications that appear on the screen. The applications do not talk to the underlying
hardware directly. Instead, they communicate through a well-defined system interface that
protects the applications from hardware changes. This abstraction makes it easy to build
applications that work on devices with different hardware capabilities.

The iOS architecture consists of four layers—the Cocoa Touch layer, Media layer, Core
Services layer, and Core OS layer—as shown in the following figure. Each layer consists of
several frameworks that help to build an application:

The iOS layers

The Cocoa Touch layer: The Cocoa Touch layer contains the key frameworks
required to develop the visual interface for iOS applications. Frameworks in this
layer provide the basic application infrastructure and support key technologies,
such as multitasking, touch-based input, and many high-level system services.
The Media layer: The Media layer provides the graphics and audio and video
frameworks to create the best multimedia experience available on a mobile
device. The technologies in this layer help developers to build applications that
look and sound great.
The Core Services layer: The Core Services layer provides the fundamental
system services that are required for the applications. Not all of these services are
used by developers, though many parts of the system are built on top of them.
This layer contains technologies to support features such as location, iCloud, and
social media.
The Core OS layer: The Core OS layer is the base layer and sits directly on top of
the device hardware. This layer deals with low-level functionalities and provides
services such as networking (BSD sockets), memory management, threading
(POSIX threads), filesystem handling, external accessories access, and inter-
process communication.

Understanding the Internals of iOS Devices Chapter 2

[55]

iOS security
Newer versions of iOS were designed with security at its core. At the highest level, the iOS
security architecture appears as shown in the following figure:

The iOS security architecture

Understanding the Internals of iOS Devices Chapter 2

[56]

Apple iOS devices such as iPhone, iPad, and iPod touch are designed with layers of
security. Low-level hardware features safeguard from malware attacks, and the high-level
OS features prevent unauthorized use. A brief overview of the iOS security features is
provided in the following sections.

Passcodes, Touch ID, and Face ID
Passcodes restrict unauthorized access to the device. Once a passcode is set, each time you
turn on or wake up the device, it will ask for the passcode to access the device. iOS devices
support simple as well as complex passcodes. iOS 9 released the option to use a six-digit
simple passcode instead of the legacy four-digit option. iPhone 5S and later also supports
Touch ID fingerprints as a passcode, which are backed up with a simple or complex
passcode. iPhone X will support a new biometric way of locking the device, Face ID, so
users can use their faces as the passcodes. And it's even more secure, as the chance that a
stranger will unlock your iPhone with Touch ID is 1 in 50,000, but with Face ID it is 1 in
1,000,000.

Code Signing
Code Signing prevents users from downloading and installing unauthorized applications
on the device. Apple says:

"Code Signing is the process by which your compiled iOS application is sealed and identified as
yours. Also, iOS devices won't run an application or load a library unless it is signed by a trusted
party. To ensure that all apps come from a known and approved source and have not been tampered
with, iOS requires that all executable code be signed using an Apple-issued certificate."

Sandboxing
Sandboxing mitigates post-code-execution exploitation by placing the application into a
tightly restricted area. Applications installed on the iOS device are sandboxed, and one
application cannot access the data stored by another. Essentially, a sandbox is a mechanism
that enforces fine-grained controls that limit an application's access to files, network
resources, hardware, and more.

Understanding the Internals of iOS Devices Chapter 2

[57]

Encryption
On iOS devices (starting with the iPhone 4), the entire filesystem is encrypted with a
filesystem key, which is computed from the device's unique hardware key. This key is
stored in effaceable storage, which exists between the OS and hardware level of the device.
This is the reason that JTAG and chip-off methods are not useful acquisition methods, as the
entire data dump will be encrypted.

Data protection
Data protection is designed to protect data at rest and to make offline attacks difficult. It
allows applications to leverage the user's device passcode in concert with the device
hardware encryption to generate a strong encryption key. Later, the strong encryption key
is used to encrypt the data stored on the disk. This key prevents data from being accessed
when the device is locked, ensuring that critical information is secured even if the device is
compromised.

Address Space Layout Randomization
Address Space Layout Randomization (ASLR) is an exploit mitigation technique
introduced with iOS 4.3. ASLR randomizes the application objects' location in the memory,
making it difficult to exploit the memory corruption vulnerabilities.

Privilege separation
iOS runs with the principle of least privileges. It contains two user roles—root and mobile.
The most important processes in the system run with root user privileges. All other
applications that the user has direct access to, such as the browser and third-party
applications, run with mobile user privileges.

Stack-smashing protection
Stack-smashing protection is an exploit mitigation technique. It protects against buffer
overflow attacks by placing a random and known value (called stack canary) between a
buffer and control data on the stack.

Understanding the Internals of iOS Devices Chapter 2

[58]

Data execution prevention
Data execution prevention (DEP) is an exploit mitigation technique mechanism in which a
processor can distinguish the portions of memory that are executable code from data. For
example, in code injection attacks, an attacker tries to inject his vector and execute it. But
DEP prevents this because it recognizes the injected part as data and not code.

Data wipe
iOS provides the Erase All Content and Settings option to wipe the data on the iPhone.
This type of data wipe erases user settings and information by removing the
encryption keys that protect the data. As the encryption keys are erased from the device, it
is not possible to recover the deleted data, not even during forensic investigations. Other
wiping methods are available that overwrite the data in the device memory. More
information on wiping can be found at https:/ ​/​support. ​apple. ​com/ ​en-​in/ ​HT201274.

Activation Lock
Lock, introduced with iOS 7, is a theft deterrent that works by leveraging Find My iPhone.
When Find My iPhone is enabled, it enables the Activation Lock, and your Apple ID and
password will be required to turn off Find My iPhone, to erase your device, and to
reactivate your device.

The App Store
The App Store is an application distribution platform for iOS, developed and maintained by
Apple. It is a centralized online store where users can browse and download both free and
paid apps. These apps expand the functionality of a mobile device. In January 2017, there
were more than 2.2 million applications in the App Store.

Apps available in the App Store are generally written by third-party developers.
Developers use XCode and the iPhone SDK to develop iOS applications. Later, they submit
the app to Apple for approval. Apple follows an extensive review process to check the app
against the company's guidelines. If Apple approves the app, it is published to the App
Store, where users can download or buy it. The strict review process makes the App Store
less prone to malware, but not 100% secure.

https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274
https://support.apple.com/en-in/HT201274

Understanding the Internals of iOS Devices Chapter 2

[59]

XCodeGhost, the Apple malware that infected 50 applications within the Apple App Store,
was detected in September 2015. This malware was built into XCode, which made it harder
to detect, and was reported to affect more than 500 million users worldwide. Once detected,
Apple immediately removed the infected applications. Currently, users can access the App
Store via iTunes and also from their iOS devices.

Jailbreaking
Jailbreaking is the process of removing limitations imposed by Apple's mobile operating
system through the use of software and hardware exploits. Jailbreaking permits unsigned
code to run and gain root access on the operating system. The most common reason for
jailbreaking is to expand the limited feature set imposed by Apple's App Store and to install
unapproved apps. Jailbreaking can aid in forensic acquisition, but will void the
user's warranty, could brick the device, and may not support being restored to the factory
settings.

If you jailbreak a device, it's best to assume that it will forever be
jailbroken and the warranty is no longer valid.

Many publicly available jailbreaking tools add an unofficial application installer to the
device, such as Cydia, which allows users to install many third-party applications, tools,
tweaks, and apps from an online file repository. The software downloaded from Cydia
opens up endless possibilities on a device that a non-jailbroken device would never be able
to do. The most popular jailbreaking tools are redsn0w, sn0wbreeze, evasi0n, Absinthe,
seas0npass, Pangu, and TaiG. Not all iOS versions are jailbreakable. The following table will
help you to choose the appropriate jailbreak tool according to the device you have and its
iOS version:

Understanding the Internals of iOS Devices Chapter 2

[60]

In October 2012, the US Copyright Office declared that jailbreaking the iPad is illegal, while
jailbreaking the iPhone is deemed legal. The governing law is reviewed every three years
and has yet to be changed.

Summary
The first step in a forensic examination of an iOS device should be identifying the device
model. The model of an iOS device can be used to help the examiner develop an
understanding of the underlying components and capabilities of the device, which can be
used to drive the methods for acquisition and examination. Legacy iOS devices should not
be disregarded, because they may surface as part of an investigation. Examiners must be
aware of all iOS devices, as old devices are sometimes still in use and may be tied to a
criminal investigation. The next chapter will provide tools that will aid in obtaining data
from iOS devices to later forensically examine. Not all tools are created equally, so it's
important to understand the best tools to get the job done properly.

3
Data Acquisition from iOS

Devices
An iOS device recovered from a crime scene can be a rich source of evidence. Think about
how personal a smartphone is to a user; nothing else digital comes close. We rarely leave
our homes or even walk around outside them without our smartphones within arm's reach.
It is literally a glimpse of the most personal aspects of a human, almost like a diary of our
everyday activity. According to several news references, Oscar Pistorius' iPads were
examined by a mobile expert and presented during the murder trial to show internet
activity hours before the murder of his girlfriend. When an iOS device can provide access to
a so-called smoking gun, the examiner must ensure that they know how to properly handle,
acquire, and analyze the device.

There are different ways to acquire forensic data from an iOS device. Though each method
will have its positives and negatives, the fundamental principle of any acquisition method
is to obtain a bit-by-bit or physical copy of the original data, where possible. With newer
iOS devices, this is almost impossible.

In this chapter, we will cover the different methods of acquisition for iOS devices, including
the following:

iOS device operating modes
Password protection and potential bypasses
Logical acquisition
Filesystem acquisition
Physical acquisition

Data Acquisition from iOS Devices Chapter 3

[62]

While the ultimate goal in a forensic examination is to obtain the physical image, this is not
possible for all iOS devices, so we need to understand the next best option when our
primary goal is not possible or supported by our tools.

Operating modes of iOS devices
Before we dive into the forensic techniques and acquisition methods, it is important to
know the different operating modes of an iOS device. Many forensic tools and methods
require you to place the device into one of the operating modes. Understanding the iOS
device's operating modes is required in order to perform a particular action on the device.

While most commercial tools will demonstrate the proper steps to get the device into a
particular mode, the examiner must understand what that mode represents. iOS devices are
capable of running in different operating modes: the normal mode, the recovery mode, and
the DFU mode. Some forensic tools require the examiner to know which mode the device is
currently utilizing. We will define each mode in this section.

Note that when the term iPhone is mentioned, it should be understood that
the statement remains true for all iOS devices.

The normal mode
When an iPhone is switched on, it is booted to its operating system; this mode is known as
the normal mode. Most regular activities (calling, texting, and so on) performed on an
iPhone will be run in the normal mode.

When an iPhone is turned on, internally, it goes through a secure boot chain, as shown in
the following figure. This does not occur for jailbroken devices. Each step in the boot-up
process contains software components that are cryptographically signed by Apple to ensure
integrity.

Data Acquisition from iOS Devices Chapter 3

[63]

A secure boot chain of an iPhone in normal mode

The Boot ROM, known as the secure ROM, is read-only memory (ROM), and is the first
significant code that runs on an iPhone (https:/ ​/ ​www.​apple. ​com/​business/ ​docs/ ​iOS_
Security_​Guide.​pdf). An explanation of the boot process for iOS devices is defined in the
following steps:

The Boot ROM code contains the Apple root CA public key, which is used to1.
verify the signature of the next stage before allowing it to load.
When the iPhone is started, the application processor executes the code from the2.
Boot ROM.
The Boot ROM, in turn, verifies whether the Low Level Bootloader (LLB) is3.
signed by Apple or not, and loads it.
When LLB finishes its tasks, it verifies and loads the second-stage boot loader4.
(iBoot). iBoot verifies and loads the iOS kernel.
The iOS kernel, in turn, verifies and runs all the user applications, as shown in5.
the preceding figure.
The secure boot chain ensures that iOS runs only on validated Apple devices.6.

When an iOS device is in this state, it is possible to gain a part that is accessible to the user
through forensic acquisition. Most often, this includes a logical acquisition, which will be
discussed later in this chapter.

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

Data Acquisition from iOS Devices Chapter 3

[64]

The recovery mode
During the boot-up process, if one step is unable to load or verify the next step, then the
boot-up is stopped and the iPhone displays a screen as shown in the following screenshot:

iOS device recovery mode

Data Acquisition from iOS Devices Chapter 3

[65]

This mode is known as the recovery mode. The recovery mode is required to perform
upgrades or to restore the iPhone. To enter the recovery mode, perform the following steps:

Turn off the device—press and hold down the Sleep/Power button located at the1.
top of the iPhone until the red slider appears. Then, move the slider and wait for
the device to turn off.
Hold down the iPhone Home button and connect the device to a computer via a2.
USB cable. The device should turn on.
Continue holding the Home button until the Connect to iTunes screen3.
appears. Then, you can release the Home button (on a jailbroken iOS device, this
screen may appear with different icons). Most forensic tools and extraction
methods will alert the examiner about the current state of the iOS device.
To exit the recovery mode, reboot the iPhone. This can be completed by holding4.
down the Home and Sleep/Power button until the Apple logo appears.

On older iOS devices, the iTunes icon will be blue and the cable will reflect the original
Apple cable.

You can read more about the iOS device recovery mode at https:/ ​/
support. ​apple. ​com/ ​en- ​in/ ​HT201263.

Normally, the process of rebooting returns the iPhone from recovery mode to normal mode.
This same methodology applies to the Apple Watch. The examiner may experience a
situation where the iPhone constantly reboots into the recovery mode. This is known as a
recovery loop. A recovery loop may occur when the user or examiner attempts to jailbreak
the iOS device and an error occurs. To get the device out of a recovery loop, the device must
be connected to iTunes, and a backup is restored to the device.

This makes changes to the evidence, so ensure that you have validated
your acquisition methods on a test device prior to attempting methods on
real evidence.

https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263
https://support.apple.com/en-in/HT201263

Data Acquisition from iOS Devices Chapter 3

[66]

For older devices, exiting a recovery loop was much easier on both Windows and Mac
computers. For older devices, several open source methods exist to repair a recovery loop.
The following steps show the redsn0w tool used on a Mac, which can be used to exit a
recovery loop:

You can download the latest version of redsn0w at https:/ ​/​sites. ​google. ​com/1.
a/​iphone- ​dev. ​com/ ​files/ ​.
Then, navigate to Extras | Recovery fix, as shown in the following screenshot. An2.
external method or tool may not be required. Sometimes, placing the device in
DFU mode and connecting the device to iTunes will properly reboot the iPhone:

The redsn0w recovery fix

https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/
https://sites.google.com/a/iphone-dev.com/files/

Data Acquisition from iOS Devices Chapter 3

[67]

DFU mode
During the boot-up process, if the Boot ROM is not able to load or verify the LLB, then the
iPhone displays a black screen. This mode is known as Device Firmware Upgrade (DFU)
mode. DFU mode is a low-level diagnostic mode and is designed to perform firmware
upgrades for the iPhone. During a firmware upgrade, the iPhone goes through a different
boot sequence, as shown in the following figure. Most forensic tools use DFU mode to
perform a physical acquisition on old iOS devices (iPhone 4 and older).

A secure boot chain of an iPhone in DFU mode

In DFU mode, the Boot ROM boots first, which, in turn, verifies and runs the second-stage
boot loaders, iBSS and iBEC. iBSS is a modified version of iBoot that kicks off the iBEC
loader, and verifies and loads the kernel (https:/ ​/​www. ​theiphonewiki. ​com/ ​wiki/ ​IBSS).
The kernel verifies and loads the ramdisk into memory. Again, most forensic acquisition
methods require the iOS device to successfully enter DFU mode.

As mentioned in Chapter 1, Introduction to Mobile Forensics, all steps must be well-
documented by the examiner. The handling of the iOS device is no exception. DFU mode is
a method recognized in mobile device forensics and is deemed to be a forensically sound
action to prepare the device for forensic acquisition.

https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS
https://www.theiphonewiki.com/wiki/IBSS

Data Acquisition from iOS Devices Chapter 3

[68]

To enter DFU mode, perform the following steps:

Download and install iTunes on your forensic workstation from https:/ ​/​www.1.
apple.​com/ ​itunes/ ​download/ ​. Make sure that you have the latest version and
that it is forensically sterile to prevent cross-contamination across evidence
plugged into the workstation. Connect your device to the forensic workstation
via a USB cable.
Turn off the device.2.
Hold down the Power button for 3 seconds.3.
Hold down the Home button without releasing the Power button for exactly 104.
seconds.
Release the Power button and continue to hold down the Home button until you5.
are alerted by iTunes with the iTunes has detected an iPhone in recovery mode.
You must restore the iPhone before it can be used with iTunes message.

At this point, the iPhone screen will be black and should not display anything. The iPhone
is ready to be used in DFU mode. If you see the Apple logo or other signals that the device
is booting, repeat steps 2 through 5 until iTunes displays that message.

Most forensic tools running on a Windows platform will provide these instructions, with
graphics, as shown in the following screenshot. This figure shows UFED Physical Analyzer
being used to physically acquire an iOS device:

UFED Physical Analyzer explains how to place a device into DFU-mode

https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/
https://www.apple.com/itunes/download/

Data Acquisition from iOS Devices Chapter 3

[69]

To verify whether the iPhone is in DFU mode on macOS X, launch System Report and go to
the USB option. You should see a device similar to what is shown in the following
screenshot:

The MAC system information displaying a DFU-mode device

Just like in recovery mode, to exit DFU mode, hold down the Home button and the
Power button until the Apple logo appears on the device.

More information can be found on methods to verify DFU mode at http:/
/​www. ​zdziarski. ​com/ ​blog/ ​wp- ​content/ ​uploads/ ​2013/ ​05/ ​iOS-​Forensic-
Investigative- ​Methods. ​pdf.

http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf

Data Acquisition from iOS Devices Chapter 3

[70]

Pulling the cable during acquisition while the device is in DFU mode will not harm the
device. Most tools will alert the examiner to not disconnect the device. However, in certain
situations, such as covert or undercover operations, a device may have to be unplugged
abruptly. If this is something you are faced with, rest assured that the device will not be
damaged, but it is unlikely that you will obtain a forensic image that you can later examine.

Setting up the forensic environment
Nowadays we have a few tools that can be used by mobile forensic examiners to acquire
and analyze iOS devices using both a Mac and a Windows system as the host. For example,
Elcomsoft iOS Forensic Toolkit has both Mac and Windows versions; as for free and open
source tools, the libimobiledevice library can be used not only on Mac and Windows
forensic workstations, but even on Linux!

We are going to introduce you to these tools, with hands-on exercises, of course, including
practical logical tools, filesystem and physical acquisitions, and even jailbreaking. But let's
start with password protection and potential bypasses, as without the passcode we can
hardly extract anything from the modern iOS device.

Password protection and potential bypasses
We want to start with the bad news: if you are examining an iPhone that runs iOS 8 or
newer, and especially if it is a newer device, for example, the iPhone 6S, your chances to
unlock it are not good at all.

Of course, there are some hardware-based solutions, for example IP-BOX 3, but all of them
work only occasionally, and using one of them can even result in bricking the device. With
iOS 11 this problem becomes even more severe—even if the device under examination is
not passcode-protected, the examiner will need the passcode anyway as it must be entered
to confirm the trust between the device and your workstation.

So, what should a mobile forensic examiner do? Use the lockdown files! The lockdown file,
which is stored as a plist file on trusted computers, enables the examiner to trick the device
into believing it is unlocked or trusted on the forensic workstation.

Data Acquisition from iOS Devices Chapter 3

[71]

The lockdown files are located in:

/var/db/lockdown on macOS X
C:\ProgramData\Apple\Lockdown on Windows 7 and later releases

You must be aware that unlocking with a lockdown file only works if the device was
unlocked with a passcode at least once after the last reboot.

There are some advanced techniques that exist. These include fingerprint molds to trick
Touch ID, masks to trick Face ID, and NAND mirroring to bypass passcode entry limits.

The first technique was first demonstrated by Jason Chaikin. He showed how to bypass
Touch ID by lifting another person's fingerprint with common molding materials, such as
dental mold and Play-Doh.

The second technique was demonstrated as proof of concept by Vietnamese cyber security
firm Bkav. They created a mask that can be used to trick the Face ID feature using a
combination of 3D printing, makeup, and 2D images.

The last technique was demonstrated by Sergei Skorobogatov, senior research associate at
the Cambridge Computer Laboratory's security group. This technique allows you to bypass
passcode entry limits by soldering off the iPhone's flash memory chip and cloning it. This
technique should work on any iOS device up to iPhone 6S Plus.

Logical acquisition
A logical acquisition captures a part of what is accessible to the user, in other words, what is
included in an iTunes backup. It means we won't get any deleted files, but thanks to SQLite
databases free lists and unallocated space, we can recover deleted records, including SMS
and other chats, browsing history, and so on. We will discuss recovering SQLite data and
deleted artifacts in Chapter 5, iOS Data Analysis and Recovery.

A logical acquisition is the simplest way to ascertain if the device is unlocked, as it simply
uses the built-in backup mechanism. Most tools and methods that support logical
acquisition of iOS devices will fail if the device is locked. Some think that if a physical
image is captured, there is little to no need for a logical acquisition. However, not all data is
parsed in a physical image, which is why having access to a logical image, resulting in
readable data, will assist in digging deep into the physical image for artifacts to support
your forensic investigation.

Data Acquisition from iOS Devices Chapter 3

[72]

A logical acquisition is the fastest, easiest, and cheapest way to gain access to data stored on
an iOS device. There are a variety of tools, ranging from commercial to free, that are capable
of capturing logical images. Most of these tools require that the device be unlocked, or
access to the plist file from the host machine be readily available.

Practical logical acquisition with libimobiledevice
Theory is good, but practice is much better. Let's create a logical image of an iPad running
iOS 9.3.5 (we are going to use this iOS device for all types of acquisition) with
libimobiledevice, which should already be installed on your workstation, as we already
used it for device information gathering in the previous chapter.

Anyway, if you are using a Mac and still don't have it installed, follow the tutorial from the
previous chapter, and if you are using a Windows workstation, download binaries
here: https:/​/​github. ​com/ ​rcmpayne/ ​libimobiledevice- ​Compiled- ​Windows.

OK, let's start:

First of all, let's make our backups encrypted. Connect the iOS device to your1.
workstation and start the Terminal (we are using a Mac workstation). Type the
following command:

idevicebackup2 backup encryption on <your_password>

If you see the following—Backup encryption has been enabled2.
successfully—you've done everything right and the backups will be encrypted. It
will help you, the forensics examiner, to gain more info, including users'
passwords.
It's time to create the backup—our iOS device logical image. To do it, type the3.
following command:

idevicebackup2 backup --full
<the_folder_you_want_the_image_to_be_saved>

https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows
https://github.com/rcmpayne/libimobiledevice-Compiled-Windows

Data Acquisition from iOS Devices Chapter 3

[73]

That's it. You can see the logical imaging process in the following figure:

iPad logical imaging with libimobiledevice

Practical logical acquisition with Belkasoft
Acquisition Tool
As logical acquisition is the most common option for modern iOS devices, we'll
demonstrate how to use a few more free tools. The first one is Belkasoft Acquisition Tool.
This tool could be used not only for iOS device acquisition, but also for hard drives, and
even cloud data.

Data Acquisition from iOS Devices Chapter 3

[74]

Let's acquire an iPhone running iOS 9.3.5 again, this time using Belkasoft Acquisition Tool.

Launch Belkasoft Acquisition Tool and choose the Mobile device option:1.

Data Acquisition from iOS Devices Chapter 3

[75]

On the next window, choose the Apple option:2.

Data Acquisition from iOS Devices Chapter 3

[76]

Now choose the device you want to acquire from the list, and the image path:3.

Data Acquisition from iOS Devices Chapter 3

[77]

Wait for the task to be finished successfully, and you will find your device's4.
logical image in the folder you chose in the previous step:

Data Acquisition from iOS Devices Chapter 3

[78]

Practical logical acquisition with Magnet
ACQUIRE
Another free tool capable of logical acquisition is ACQUIRE from Magnet Forensics. Let's
perform a logical acquisition again; this time we will image an iPhone running the most
recent iOS version 11.1.2 (at the time of writing).

Launch Magnet ACQUIRE and choose the device you want to image from the1.
list:

Data Acquisition from iOS Devices Chapter 3

[79]

Choose the type of the image; we want to acquire a logical image and our device2.
is not jailbroken, so we are choosing the Quick option:

Data Acquisition from iOS Devices Chapter 3

[80]

Fill in the fields available, and choose the folder where you want the image to be3.
saved:

Data Acquisition from iOS Devices Chapter 3

[81]

Wait for the tasks to be finished successfully, and you will find your device's4.
logical image in the folder you chose in the previous step:

Filesystem acquisition
Secure Enclave has brought new challenges to iOS forensic examiners. Now, we can't
extract encryption keys required to decrypt the device image, so physical acquisition is
useless. But here comes the filesystem acquisition. Unfortunately, it requires the iOS device
to be jailbroken. The next section will show you how to jailbreak our iPad running iOS 9.3.5
with Phoenix.

Data Acquisition from iOS Devices Chapter 3

[82]

Practical jailbreaking
To perform filesystem and physical acquisitions, we need our iOS device to be jailbroken.
Here are the steps to jailbreak a 32-bit iOS device running 9.3.5:

Download Phoenix4.ipa using the following link—https:/ ​/ ​phoenixpwn. ​com/ ​.1.
Download Cydia Impactor using the following link—http:/ ​/​www.2.
cydiaimpactor. ​com/ ​.
Connect the iOS device, iPad in our case, to your forensic workstation.3.
Start Cydia Impactor. Drag and drop the IPA file you downloaded.4.
Enter the owner's Apple ID credentials. Make sure you are using a previously-5.
created app-specific password. You can create one using the following
link—https:/ ​/ ​appleid. ​apple. ​com. You will need the suspect's credentials!
On the device, go to Settings | General | Device Management to trust the6.
certificate.
Run the Phoenix app on the device and tap on Prepare For Jailbreak.7.
Finally, tap on Kickstart Jailbreak in the app.8.

For more jailbreaking techniques, refer to the Jailbreaking section in
Chapter 2, Understanding the Internals of iOS Devices.

That's it. Now our iPad is jailbroken and we are almost ready for the filesystem acquisition.

The only thing left is OpenSSH installation via Cydia. Here is how to do it:

Open Cydia on the device you are examining.1.
Go to the Search tab, and type OpenSSH in the search bar.2.
Tap on the result and install OpenSSH.3.

Now we are ready for both filesystem and physical imaging of our iOS device.

https://phoenixpwn.com/
https://phoenixpwn.com/
https://phoenixpwn.com/
https://phoenixpwn.com/
https://phoenixpwn.com/
https://phoenixpwn.com/
https://phoenixpwn.com/
https://phoenixpwn.com/
http://www.cydiaimpactor.com/
http://www.cydiaimpactor.com/
http://www.cydiaimpactor.com/
http://www.cydiaimpactor.com/
http://www.cydiaimpactor.com/
http://www.cydiaimpactor.com/
http://www.cydiaimpactor.com/
http://www.cydiaimpactor.com/
http://www.cydiaimpactor.com/
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com
https://appleid.apple.com

Data Acquisition from iOS Devices Chapter 3

[83]

Practical filesystem acquisition with Elcomsoft
iOS Forensic Toolkit
It's time to perform a filesystem acquisition. We are going to use Elcomsoft iOS Forensic
Toolkit to do it. Here is how to do it:

First of all, connect the device to your workstation (don't forget to tap Trust on1.
the device) and start Toolkit-JB.command (Mac) or Toolkit-JB.cmd (Windows).
You will see a window with available options. As we are planning to perform2.
filesystem acquisition now, we are interested in the TAR FILES option. This
option enables the examiner to extract the filesystem from the user partition and
save it in a TAR archive. This archive can be imported in most modern mobile
forensics tools for processing. To choose this option, type 8.
Now, you should choose the image name and its location, otherwise the file will3.
be saved in the current directory (Windows), or in the current user’s home
directory (macOS).
Once the imaging process is completed, you will get a TAR archive with the4.
filesystem ready to be imported to the mobile forensics tool of your choice.

Physical acquisition
iOS devices have two types of memory—volatile (RAM) and non-volatile (NAND Flash).
RAM is used to load and execute the key parts of the operating system or the application.
The data stored in the RAM is lost after a device reboots. RAM usually contains very
important application information, such as active applications, usernames, passwords, and
encryption keys. Though the information stored in the RAM can be crucial in an
investigation, currently there is no easy method or tool available to acquire the RAM
memory from a live iPhone.

Data Acquisition from iOS Devices Chapter 3

[84]

Unlike RAM, NAND is non-volatile memory and retains the data stored in it even after a
device reboots. NAND flash is the main storage area, and contains the system files and user
data (http:/​/​nvlpubs. ​nist. ​gov/ ​nistpubs/ ​SpecialPublications/ ​NIST. ​SP. ​800- ​101r1.
pdf). This document, written by NIST, not only covers memory storage in mobile devices,
but mobile device forensic practices in general.

The goal of physical acquisition is to perform a bit-by-bit copy of the NAND memory,
similar to the way in which a computer hard drive would be forensically acquired. While
data storage seems similar, NAND differs from the magnetic media found in modern hard
drives. NAND memory is cheaper, faster, and holds a great amount of data. Thus, NAND is
the ideal storage for mobile devices, as mentioned in Learning iOS Forensics, Mattia Epifani
and Pasquale Stiparo, Packt Publishing.

Physical acquisition has the greatest potential for recovering data from iOS devices;
however, current and evolving security features (secure boot chain, storage encryption, and
passcode) on these devices may hinder the accessibility of the data during
forensic acquisition. Researchers and commercial forensic tool vendors are continually
attempting new techniques to bypass the security features and perform physical acquisition
on iOS devices, but for the latest model the only available option is jailbreaking, and even
this won't help you to physically acquire devices with Secure Enclave, as has already been
mentioned.

Practical physical acquisition with Elcomsoft iOS
Forensic Toolkit
You've already used Elcomsoft iOS Forensic Toolkit for filesystem acquisition; now it's time
to put your hands on physical acquisition with the help of this forensic tool.

Here are the steps:

Connect the device to your workstation and start Toolkit-JB.command (Mac) or1.
Toolkit-JB.cmd (Windows).

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf

Data Acquisition from iOS Devices Chapter 3

[85]

Starting from the GET KEYS option, type 4. It will help you to get the device2.
keys you need to decrypt the physical image.

Extracting the device keys

Data Acquisition from iOS Devices Chapter 3

[86]

We are ready to start imaging. Choose the IMAGE DISK option, and type 6. You3.
will see two partitions, System (unencrypted) and User (encrypted). We are
interested in the User partition, of course, so let's enter its number in the prompt.

Imaging the User partition

Once the imaging process is completed, we are ready to decrypt the image using4.
the device keys we extracted. To do this, use the DECRYPT DISK option, and
type 7. As the result, you'll get a physical image ready to be imported into a
mobile forensic tool of your choice.

Data Acquisition from iOS Devices Chapter 3

[87]

Decrypting the image

Summary
The first step in iOS device forensic examination is to acquire the data from the device.
There are several different ways to acquire data from an iOS device. This chapter covered
logical, filesystem, and physical acquisition techniques, including techniques of acquiring
jailbroken devices and methods to bypass passcodes. Physical acquisition is the preferred
acquisition method as it recovers as close as we can get to a bit-by-bit copy of the data from
the device; however, it is not possible to perform physical acquisition on all iOS devices.

While physical acquisition is the best method for forensically obtaining a majority of the
data from iOS devices, backup files may exist or be the only method to extract data from the
device.

The next chapter discusses iOS device backup files in detail, including user, forensic,
encrypted, and iCloud backup files, and the methods to conduct your forensic examination.

4
Data Acquisition from iOS

Backups
In the previous chapter, we covered techniques to acquire data from an iOS device. This
chapter covers techniques to acquire a backup of files from the device onto a computer or
iCloud using Apple's synchronization protocol.

The physical acquisition of an iOS device provides the most data in an investigation, but
you can also find a wealth of information on iOS backups. iOS device users have several
options to back up data present on their devices. Users can choose to back up data to their
computer using the Apple iTunes software, or to the Apple cloud storage service known as
iCloud. Every time an iPhone is synced with a computer or to iCloud, it creates a backup by
copying the selected files from the device. The user can determine what is contained in the
backup, so some may be more inclusive than others. Also, the user can back up to both a
computer and iCloud, and the data derived from each location may differ. This often occurs
due to the limitations of iCloud free storage. The user may simply back up photos and
contacts to iCloud, but may take a complete backup of all data on their computer. As
previously mentioned, physical acquisition provides the best access to all data on the iOS
device; however, backups may be the only available source of digital evidence, especially if
we are dealing with the most recent iOS devices.

In this chapter, we will cover the following topics:

iTunes and iCloud backup files
Creating and analyzing backup files
How to handle encrypted backup files
Backup file contents, file structure, and artifact recovery

Data Acquisition from iOS Backups Chapter 4

[89]

iTunes backup
A wealth of information is stored on any computer that has been previously synced with an
iOS device. These computers, commonly referred to as host computers, can have historical
data and passcode-bypass certificates. In a criminal investigation, a search warrant can be
obtained to seize a computer that belongs to a suspect to access the backup and lockdown
certificates. For all other cases, consent or permissible access is required. iOS backup file
forensics mainly involves analyzing an offline backup produced by an iPhone, iPad, iPod
touch, and/or Apple Watch. The Apple Watch data will be contained within the iPhone
backup to which it is synced.

The iTunes backup method is also useful in cases when physical, filesystem, and logical
acquisition of an iOS device is not feasible. In this situation, examiners essentially create an
iTunes backup of the device and analyze it using forensic software. Thus, it is important for
an examiner to completely understand the backup process and the tools involved to ensure
they are capable of creating a forensic backup without contaminating the devices with other
data existing in iTunes.

iPhone backup files can be created using the iTunes software, which is available for the
macOS and Windows platforms. iTunes is a free utility provided by Apple for data
synchronization and management between iOS devices and the computer. iTunes uses
Apple's proprietary synchronization protocol to copy data from the iOS device to a
computer. For example, an iPhone can be synced with a computer using a cable or Wi-Fi.
iTunes provides an option for encrypted backup, but by default, it creates an unencrypted
backup whenever an iPhone is synced. Encrypted backups, when cracked, provide
additional access to data stored on the iOS device. This will be discussed later in this
chapter.

Users often create backup files to protect their data in the event that their device is damaged
or lost. We either create a forensic backup to act as the best evidence or simply extract data
from existing iOS backup files to search for legacy information. For example, if you are
under investigation and you delete files or wipe your iPhone, your backup files on iCloud
and your Mac still exist. Depending on whether iTunes or iCloud was used, multiple
backups for the same device may exist. The examiner will have to forensically analyze each
backup to uncover artifacts relating to the investigation.

iTunes is configured to automatically initiate the synchronization process once the iOS
device is connected to the computer. To avoid unintended data exchange between the iOS
device and the computer, disable the automatic synchronization process before connecting
your evidence to the forensic workstation. The screenshot in step 2 illustrates the option
that disables automatic syncing in iTunes version 12.7.1.14.

Data Acquisition from iOS Backups Chapter 4

[90]

To disable auto-syncing in iTunes, perform the following steps:

Navigate to iTunes | Preferences | Devices.1.
Check Prevent iPods, iPhones and iPads from syncing automatically and click2.
on the OK button:

Disabling automatic syncing in iTunes

As seen in the preceding screenshot, iOS backup files exist on the system. If this3.
were a forensic workstation, these backup files would not exist or would be
permanently removed to prevent cross-contamination.

Data Acquisition from iOS Backups Chapter 4

[91]

Once you verify the synchronization settings, connect the iOS device to the4.
computer using a USB cable. If the connected device is not protected with a
passcode, iTunes immediately recognizes the device. This can be verified by the
iPhone icon displayed on the left-hand side of the iTunes interface as shown in
the following screenshot:

An iPhone recognized by iTunes

Data Acquisition from iOS Backups Chapter 4

[92]

Before iTunes can access the iPhone, you must enable Trust between the5.
computer and the phone. You will be prompted to press Continue on the
computer and select Trust on the iPhone. With iOS 11, you must also enter the
device's passcode:

iTunes prompts for access permissions

Once iTunes recognizes the device, a single click on the iPhone icon displays the6.
iPhone summary, including the iPhone's name, capacity, firmware version, serial
number, free space, and phone number. The iPhone Summary page also displays
the options to create backups. Steps to create a backup will be discussed in the
following section.

Creating backups with iTunes
In this section, we are going to walk you through backing up an iOS device with Apple
iTunes. We are using iTunes version 12.7.1.14 and an iPhone running iOS version 11.1.2:

Connect the device and click on the iPhone icon displayed on the left-hand side1.
of the iTunes interface.
Go to the Backups section, where you can choose the backup destination—local2.
computer or iCloud, and also whether it's encrypted or not:

Data Acquisition from iOS Backups Chapter 4

[93]

Encrypted iTunes backups contain data that unencrypted ones don't,
including passwords, Wi-Fi settings, and web-browsing history, so make
sure you are creating encrypted backups for forensic purposes.

iTunes Backups section

Click on the Back Up Now button and wait for the process to complete. Once it's3.
complete, the latest backup will be changed.

If you are using macOS, you can find the backup you created in the following
location: ~/Library/Application Support/MobileSync/Backup/.

If you are using Windows, you can find the backup
here: C:\Users<user_name>\AppData\Roaming\Apple
Computer\MobileSync\Backup\.

If you want to use iTunes and save the backup to an external drive, follow these
instructions (we are using iTunes version 12.7.1.14 and macOS 10.12.6):

Rename the original backup folder, and create a new one.1.
Connect the external drive, and create a backup folder on it.2.
Open Terminal, and type the following command:3.

ln -s /Volumes/<volume_name>/Backup ~/Library/Application\
Support/MobileSync/Backup

Now you can create a regular local backup, and it will be saved to your external4.
drive.

Data Acquisition from iOS Backups Chapter 4

[94]

Understanding the backup structure
When the iPhone is backed up to a computer, the backup files are stored in a backup
directory, which exists as a 40-character hexadecimal string and corresponds to the Unique
Device Identifier (UDID) of the device. The backup process may take a considerable
amount of time depending on the size of the data stored on the iPhone during the first
backup. The location of the backup directory in which your backup data is stored depends
on the computer's operating system. The following table displays a list of the common
operating systems and the default locations of the iTunes backup directory:

Operating system Backup directory location

Windows XP \Documents and Settings\[user name]\Application
Data\Apple Computer\MobileSync\Backup\

Windows
Vista/7/8+/10

\Users\[user name]\AppData\Roaming\Apple
Computer\MobileSync\Backup\

macOS X
~/Library/Application Support/MobileSync/Backup/

(~ represents the home folder)

During the first sync, iTunes creates a backup directory and takes a complete backup of the
device. Currently, on subsequent syncs, iTunes only backs up the files that are modified on
the device and updates the existing backup directory. This has not always been true as, in
the past, a new backup was created every time the iOS device was backed up. Also, when a
device is updated or restored, iTunes automatically initiates a backup and takes a
differential backup. A differential backup has the same name as the backup directory, but
is appended with a dash (-), the ISO date of the backup, a dash (-), and the time in a 24-hour
format with seconds ([UDID]+ '-' + [Date]+'-'+[Time stamp]).

The iTunes backup may make a copy of everything on the device, including contacts, SMS,
photos, the calendar, music, call logs, configuration files, documents, the keychain, network
settings, offline web application cache, bookmarks, cookies, application data (if selected),
and more. For example, email and passwords will not be extracted if the backup is not
encrypted. The backup also contains device details such as the serial number, UDID, SIM
details, and phone number. This information can also be used to prove a relationship
between the backup and the mobile device.

Data Acquisition from iOS Backups Chapter 4

[95]

The backup directory contains four standard files along with the individual files (up to iOS
9) or folders (iOS 10 and newer). Up to iOS 9, these four files were info.plist,
manifest.plist, status.plist, and manifest.mbdb, but starting from iOS 10, we have
the following standard files:

nfo.plist

manifest.plist

status.plist

manifest.db

 These files store details about the backup and the device from which it was derived.

info.plist
The info.plist file stores details about the backed-up device and typically contains the
following information:

Applications: This is the list of applications installed on the device
Build version: This is the iOS build version number
Device name and display name: This is the name of the device, which
typically includes the owner's name
GUID: This is Globally Unique Identifier (GUID) of the device
ICCID: This is the Integrated Circuit Card Identifier (ICCID), which is the serial
number of the SIM
IMEI: This is the International Mobile Equipment Identity (IMEI), which is
used to uniquely identify the mobile phone
Last backup date: This is the timestamp of the last successful backup
MEID: This is the Mobile Equipment Identifier of the device
Phone Number: This is the phone number of the device at the time of backup
Product Name: This is the name of the device (for example, iPhone X)
Product type and product version: This is the device's model and
firmware version
Serial Number: This is the serial number of the device
Target Identifier and Unique Identifier: This is the UDID of the device
iTunes version: This is the version of iTunes used to create the backup

Data Acquisition from iOS Backups Chapter 4

[96]

manifest.plist
The manifest.plist file describes the contents of the backup and typically contains the
following information:

Backup keybag: The Backup keybag contains a set of data protection class keys
that are different from the keys in the System keybag, and backed-up data is re-
encrypted with the new class keys. Keys in the Backup keybag facilitate the
storage of backups in a secure manner.
Date: This is the timestamp of a backup created or last updated.
ManifestKey: This is the key used to encrypt Manifest.db (wrapped with
protection class four).
WasPasscodeSet: This identifies whether a passcode was set on the device when
it was last synced.
Lockdown: This contains device details, the last backup computer's name, and
other remote syncing profiles.
Applications: This is a list of third-party applications installed on the backed-
up device, their version numbers, and bundle identifiers.
IsEncrypted: This identifies whether the backup is encrypted or not. For
encrypted backups, the value is True, otherwise it is False.

status.plist
The status.plist file stores details about the backup status and typically contains the
following information:

SnapshotState: This identifies whether the backup process has successfully
finished
IsFullBackup: This identifies whether or not the backup was a full backup of
the device
UUID: This is the Universally Unique Identifier (UUID) of the device
Date: This is the timestamp of the last time the backup was modified
BackupState: This identifies whether the backup is a new backup or one that
has been updated

Data Acquisition from iOS Backups Chapter 4

[97]

manifest.db
manifest.db is a SQLite database, which contains a list of all the files and folders extracted
from the iPhone via the backup mechanism. The Files table of the database includes the
following columns:

fileID: This is a SHA1 hash of the domain plus the symbol - and file or folder
relative path. For example, ae94e0607ca39a88c18aca095cb5b4f8471291a0 is
the SHA1 hash for CameraRollDomain-
Media/PhotoData/Thumbnails/V2/DCIM/102APPLE.
domain: This is the domain the file or folder belongs to (all files in iOS are
divided into multiple domains, for example,
CameraRollDomain and HomeDomain).
relativePath: This is the relative path to the file (including the filename) or
folder.
flags: These are the file flags.
file: This is an embedded .plist file. These .plist files include the following
important pieces of information, among others:

LastModified: This is the file's last modification timestamp in
Unix format
Birth: This is the file creation timestamp in Unix format:

The manifest.db contents

Data Acquisition from iOS Backups Chapter 4

[98]

You can easily export this embedded binary .plist using, for example, DB Browser for
SQLite. To do this, follow these steps:

Open manifest.db using the Open Database button.1.
Go to the Browse Data tab.2.
Click on the the cell from the file column.3.
On the Edit Database Cell pane, use the Export button to save the data as a4.
.plist file:

Exporting an embedded .plist file with DB Browser for SQLite

Since iOS 10, there are no more files named with a 40-character hexadecimal string. Instead,
you will see a list of folders named with 2-character hexadecimal strings, which contain the
files you used to see in previous versions:

iPhone (running iOS 11.1.2) backup files

Data Acquisition from iOS Backups Chapter 4

[99]

Extracting unencrypted backups
There are many free and commercial tools available to analyze data from unencrypted
backups. These tools analyze the manifest.db database, restore the filenames, and create
the file structure that users see on the iOS device. Some popular tools include the iBackup
Viewer, iExplorer, and commercial tools such as BlackLight, AXIOM, Physical Analyzer,
and more.

iBackup Viewer
iBackup Viewer is a free tool for both Windows and macOS, which can be downloaded
from http:/​/​www. ​imactools. ​com/ ​iphonebackupviewer/ ​.

The tool expects the backup to be located in the default location, but you can change it to
the location of your choice, for example, an external drive.

To extract the backup, follow these steps:

If the backup you want to analyze is not saved in the default location, click on1.
the Preferences hyperlink on the main screen, and choose the right location:

Choosing the backup location

http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/
http://www.imactools.com/iphonebackupviewer/

Data Acquisition from iOS Backups Chapter 4

[100]

You will see the backups available in the location you chose. Click on the one you2.
want to examine.

You will see available potential evidence sources, including contacts, call history,
messages, calendars, notes, voicemails, and browsing history:

Potential evidence sources

It's important to note that you can browse the backup as a filesystem, using the3.
Raw Data mode (the last icon on the previous illustration):

The Raw Data mode

Data Acquisition from iOS Backups Chapter 4

[101]

iExplorer
iExplorer is a free tool for macOS X and Windows, which can be downloaded from https:/
/​macroplant.​com/ ​iexplorer. This tool supports both Windows and macOS, and is capable
of browsing iTunes backups too. Here is how to use it:

Launch iExplorer, and click on Browse iTunes Backups.1.
To add a backup from a custom location, click on Add / Modify Backup2.
Location.
Now click on the Add Backup Location button, and choose the path:3.

Adding a custom path

 The backups from your custom location should now be available. 4.

Also, there is an interesting option—iExplorer can gather SQLite databases for you. To do
this, click on the Raw Databases button. You will learn more about SQLite forensics in the
next chapter:

https://macroplant.com/iexplorer
https://macroplant.com/iexplorer
https://macroplant.com/iexplorer
https://macroplant.com/iexplorer
https://macroplant.com/iexplorer
https://macroplant.com/iexplorer
https://macroplant.com/iexplorer
https://macroplant.com/iexplorer

Data Acquisition from iOS Backups Chapter 4

[102]

iExplorer Raw Databases option

You can browse the backup as a list of files and folders with the help of iExplorer too; use
the left pane for this. Also, you can use the Backup Explorer button and use the main pane
to browse the backup.

Data Acquisition from iOS Backups Chapter 4

[103]

BlackLight
BlackLight is a commercial tool offered by BlackBag Technologies. This tool is one of the
few that function on both Windows and macOS X, proving great support for all iOS
acquisition types, even for encrypted backup files where the passcode is known or the
lockdown file is available. BlackBag also provides free training in the use of the tool;
visit https:/​/​www. ​blackbagtech. ​com/ ​training/ ​courses/ ​blacklight- ​tool- ​training.
html for more information.

To extract the backup, perform the following steps:

Launch the app and click Add—you will be prompted by an Add Evidence1.
window.
Click Add again, and choose Add Folder.2.
Choose the backup you want to analyze, and click the Select button.3.
Now you should choose the method for extraction. The All option takes the4.
longest, but parses the most artifacts for examination:

BlackLight Ingestion Options

https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html
https://www.blackbagtech.com/training/courses/blacklight-tool-training.html

Data Acquisition from iOS Backups Chapter 4

[104]

Click Start. When processing has completed, an Artifacts summary can be5.
viewed:

Artifacts summary

Data Acquisition from iOS Backups Chapter 4

[105]

Encrypted backup
For encrypted backups, the backup files are encrypted using the AES256 algorithm in the
CBC mode, with a unique key and a null initialization vector (IV). The unique file keys are
protected with a set of class keys from the Backup keybag. The class keys in the Backup
keybag are protected with a key derived from the password set in iTunes through 10,000
iterations of Password-Based Key Derivation Function 2 (PBKDF2). Both open source and
commercial tools provide support for encrypted backup file parsing if the password is
known. Some tools won't even prompt for a password, which makes them useless in a
forensic investigation. Other tools will attempt to crack the password.

Elcomsoft Phone Breaker
Elcomsoft Phone Breaker is a GPU-accelerated commercial tool from Elcomsoft developed
for the Windows platform. The tool can decrypt an encrypted backup file when the backup
password is not available. The tool provides an option to launch a password brute-force
attack on the encrypted backup if the backup password is not available. Elcomsoft Phone
Breaker tries to recover the plain-text password that protects the encrypted backup using
dictionary and brute-force attacks. Passwords that are relatively short and simple can be
recovered in a reasonable time. But if the backup is protected with a strong and complex
password, breaking it can take forever.

To brute-force the backup password, perform the following steps:

Launch the Elcomsoft Phone Breaker tool and the tool's main screen will appear,1.
as shown in the following screenshot:

Data Acquisition from iOS Backups Chapter 4

[106]

Elcomsoft Phone Breaker's main screen

Navigate to Password Recovery Wizard | Choose source | iOS device backup.2.
Navigate to the backup file you want to crack and select the Manifest.plist
file.
Configure the brute-force pattern in the Attacks section and click on the Start3.
button to start the brute-force attack. If the brute-force attack is successful, the
tool displays the password on the main screen:

Password recovery process

Data Acquisition from iOS Backups Chapter 4

[107]

If you have an iPhone running iOS 11 and its passcode, you can reset the actual password
and make a backup with a new known password. Here is how to do it:

On the iPhone, go to Settings | General | Reset.1.
Choose Reset All Settings and enter the device's passcode. It's important to note2.
that no data will be deleted.
Once the settings are reset, you can create a new backup with a password of your3.
choice.

Working with iCloud backups
iCloud is a cloud storage and cloud computing service by Apple, launched in October 2011.
The service allows users to keep data such as calendars, contacts, reminders, photos,
documents, bookmarks, applications, notes, and more in sync across multiple compatible
devices (iOS devices running with iOS 5 or later, computers with macOS X 10.7.2 or later,
and Microsoft Windows), using a centralized iCloud account. The service also allows users
to wirelessly and automatically back up their iOS devices to iCloud. iCloud also provides
other services, such as Find My iPhone (to track a lost phone and wipe it remotely), Find
My Friends (to share locations with friends and notify the user when a device arrives at a
certain location), and more.

Signing up with iCloud is free and simple to do with an Apple ID. When you sign up for
iCloud, Apple grants you access to 5 GB of free remote storage. If you need more storage,
you can purchase the upgrade plan. To keep your data secure, Apple forces users to
choose a strong password when creating an Apple ID to use with iCloud. The password
must have a minimum of eight characters, a number, an uppercase letter, and a lowercase
letter.

iOS devices running on iOS 5 and later allow users to back up the device settings and data
to iCloud. Data backed up includes photos, videos, documents, application data, device
settings, messages, contacts, calendar, email, keychain, and more. You can turn on iCloud
backup on your device by navigating to Settings | Accounts & Passwords | iCloud, as
shown in the following screenshot:

Data Acquisition from iOS Backups Chapter 4

[108]

iCloud backup options on the iPhone

iCloud can automatically back up your data when your phone is plugged in, locked, and
connected to Wi-Fi. That is to say, iCloud backups represent a fresh and near-real-time copy
of information stored on the device, as long as space is available to create a current backup.

You can also initiate an iCloud backup from a computer by connecting the device to iTunes
and choosing the iCloud option. iCloud backups are incremental; that is, once the initial
iCloud backup is completed, all the subsequent backups only copy the files that are
changed on the device. iCloud secures your data by encrypting it when it is transmitted
over the internet, storing it in an encrypted format on the server, and using secure tokens
for authentication.

Apple's built-in apps (for example, Email and Contacts) use a secure token to access iCloud
services. Using secure tokens for authentication eliminates the need to store the iCloud
password on devices and computers.

Data Acquisition from iOS Backups Chapter 4

[109]

Extracting iCloud backups
Online backups stored on the iCloud are commonly retrieved when the original iOS device
is damaged, upgraded, or lost. To extract a backup from iCloud, you must know the user's
Apple ID and password. With the known Apple ID and password, you can log on to
https:/​/​www.​icloud. ​com/ ​ and get access to contacts, notes, email, calendar, photos,
reminders, and more. To extract the complete backup from iCloud, you can use Elcomsoft
Phone Breaker. As iCloud is not the fastest cloud storage service, downloading a large
backup with Elcomsoft Phone Breaker can take hours and may not be successful. To speed
up the investigation, the tool provides an option to download selected files.

To extract the iCloud backup, perform the following steps:

Launch Elcomsoft Phone Breaker.1.
Navigate to Tools | Apple | Backups. You are prompted to sign in with your2.
Apple ID and password.
Successfully signing in with your Apple ID lists the available device backups that3.
can be downloaded, as shown in the following screenshot:

Select the backup you need and click on Download. You are prompted for a4.
destination directory to save the extracted files into a number of domain
directories by restoring the original filenames. The tool also provides an option to
download the backup without restoring the original filenames so that you can
use third-party software for analysis.

https://www.icloud.com/
https://www.icloud.com/
https://www.icloud.com/
https://www.icloud.com/
https://www.icloud.com/
https://www.icloud.com/
https://www.icloud.com/
https://www.icloud.com/
https://www.icloud.com/
https://www.icloud.com/

Data Acquisition from iOS Backups Chapter 4

[110]

For iCloud backups, the keychain file contents are encrypted with a set of class keys in the
Backup keybag. The Backup keybag itself is protected with a key (0x835) derived from
the iPhone hardware key (UID key). You can follow the techniques explained in the
preceding sections to decrypt the keychain from the extracted iCloud backup.

Summary
iOS device backups contain essential information that may be your only source of evidence.
Information stored in iOS backups includes photos, videos, contacts, email, call logs, user
accounts and passwords, applications, device settings, and more. This chapter covered
techniques to create backup files and retrieve data from iTunes and iCloud backups,
including encrypted backup files, wherever possible.

Chapter 5, iOS Data Analysis and Recovery, goes further into the forensic investigation by
showing the examiner how to analyze the data recovered from the backup files. Areas
containing data of potential evidentiary value will be explained in detail. Chapter 5, iOS
Data Analysis and Recovery, will then teach you how to analyze the data pulled from Chapter
3, Data Acquisition from iOS Devices, and artifacts pulled from backup files as discussed in
this chapter.

5
iOS Data Analysis and

Recovery
A key aspect in iOS device forensics is to examine and analyze the data acquired to
interpret the evidence. Data on most iOS devices is encrypted, and it is necessary to decrypt
the data partition prior to an examination. In the previous chapters, you learned various
techniques to acquire data from an iOS device. The raw disk image obtained during
physical acquisition, the filesystem dump, or the logical or backup file, contains hundreds
of data files that are often decrypted by the forensic tools described in earlier chapters. Even
when the data is parsed and decrypted by the forensic tool, manual analysis may be
required to uncover additional artifacts or to simply validate your findings. This chapter
will help you understand how data is stored on iOS devices, and it will walk you through
the key artifacts that should be examined in each investigation to recover the most data
possible.

In this chapter, we will be covering the following topics:

How iOS devices store data
Key artifacts to examine in every investigation (databases and plists)
The best tools and methods to extract key evidence
How to recover deleted data from key database files

iOS Data Analysis and Recovery Chapter 5

[112]

Timestamps
Before examining the data, it is important to understand the different timestamps that are
used on iOS devices. Timestamps found on iOS devices are presented either in the Unix
timestamp or Mac absolute time format. The examiner must ensure that the tools
properly convert the timestamps for the files. Access to the raw SQLite files will allow the
examiner to verify these timestamps manually. Further information on iOS timestamps can
be found at http:/ ​/ ​www. ​zdziarski. ​com/ ​blog/ ​wp- ​content/ ​uploads/ ​2013/ ​05/​iOS-
Forensic-Investigative-Methods.pdf.

Unix timestamps
A Unix timestamp is the number of seconds that offsets the Unix epoch time, which starts
on January 1, 1970. A Unix timestamp can be converted easily using the date command on a
Mac workstation or using an online Unix epoch converter; such as, https:/ ​/​www.
epochconverter.​com/ ​.

The date command is as follows:

$ date -r 1512808725
Sat Dec 9 11:38:45 MSK 2017

You may also face Unix timestamps in millisecond or nanosecond format. This is not a big
problem either; there are a number of online converters, such as, http:/ ​/​currentmillis.
com/​:

A Unix timestamp in milliseconds converted with http://currentmillis.com/

http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
http://www.zdziarski.com/blog/wp-content/uploads/2013/05/iOS-Forensic-Investigative-Methods.pdf
https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/
https://www.epochconverter.com/
http://currentmillis.com/
http://currentmillis.com/
http://currentmillis.com/
http://currentmillis.com/
http://currentmillis.com/
http://currentmillis.com/
http://currentmillis.com/

iOS Data Analysis and Recovery Chapter 5

[113]

Mac absolute time
iOS devices adopted the use of Mac absolute time with iOS 5 for most of the data. Mac
absolute time is the number of seconds that offsets the Mac epoch time, which starts on
January 1, 2001. The difference between the Unix epoch time and the Mac time is exactly
978,307,200 seconds. It means you can easily convert the Mac time to the Unix epoch and
use the same methods to finally convert it to a human-readable timestamp. Of course, there
are a few online converters, such as, https:/ ​/​www. ​epochconverter. ​com/ ​coredata:

A Mac timestamp converted with https://www.epochconverter.com/coredata

WebKit/Chrome time
When analyzing iOS application data, especially web browsers such as Google Chrome,
Safari, and Opera, you will face another timestamp format—WebKit/Chrome time. This is
the number of microseconds since January 1, 1601. There is also an online converter for this:
https:/​/​www.​epochconverter. ​com/ ​webkit.

https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/coredata
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit
https://www.epochconverter.com/webkit

iOS Data Analysis and Recovery Chapter 5

[114]

If you don't like or don't want to use online converters for some reason, there is a free tool
for you - Digital Detective's DCode. This tool can be used to convert timestamps in a
number of different formats, including Unix time (both seconds and milliseconds), Mac
time, and WebKit/Chrome time:

A WebKit/Chrome timestamp converted with DCode

SQLite databases
SQLite is an open source, in-process library that implements a self-contained, zero-
configuration, transactional SQL database engine. This is a complete database with multiple
tables, triggers, and views that are contained in a single cross-platform file. As SQLite is
portable, reliable, and small, it is a popular database format that appears in many mobile
platforms.

Apple iOS devices, like other smartphones, make heavy use of SQLite databases for data
storage. Many of the built-in applications, such as phone, messages, mail, calendar, and
notes, store data in SQLite databases. Apart from this, third-party applications installed on
the device also leverage SQLite databases for data storage.

SQLite databases are created with or without a file extension. They typically have the
.sqlitedb or .db file extensions, but some databases are given other extensions as well.

iOS Data Analysis and Recovery Chapter 5

[115]

Data in SQLite files is broken up into tables that contain the actual data. To access the data
stored in these files, a tool that can read them is needed. Most commercial forensic tools,
such as Oxygen, SQLite Forensic Browser, and Physical Analyzer provide support for the
examination of SQLite databases. If you don't own one of these tools, some good free tools
are as follows:

DB browser for SQLite: This can be downloaded from http:/ ​/ ​sqlitebrowser.
org/​.
SQLite command-line client: This can be downloaded from http:/ ​/​www. ​sqlite.
org/​.
SQLite Professional (https:/ ​/​www.​sqlitepro. ​com/ ​): This is a free graphical
user interface (GUI) from Hankinsoft Development for macOS X users. You can
download it from Apple's App Store.
SQLite Spy: This is a free GUI tool for Windows. You can download it from
http://www.yunqa.de/delphi/doku.php/products/sqlitespy/index.

macOS X includes the SQLite command-line utility (sqlite3) by default. This command-
line utility can easily access individual files and issue SQL queries against a database. In the
following sections, we will use both the sqlite3 command-line utility and other SQLite
tools and browsers to retrieve data from various SQLite databases. Before retrieving the
data, the basic commands that you will need to learn are explained in the following
sections.

Connecting to a database
Manual examination of iOS SQLite database files is possible with the use of free tools. The
following is an example of how to examine a database using native Mac commands in
Terminal. Make sure that your device image is mounted as read-only to prevent changes
being made to the original evidence. To connect to a SQLite database from the command
line, run the sqlite3 command in the Terminal by entering your database file. This will
give you a SQL prompt where you can issue SQL queries:

$ sqlite3 sms.db
SQLite version 3.19.3 2017-06-27 16:48:08
Enter ".help" for usage hints.

To disconnect, use the .exit command. This exits the SQLite client and returns to the
Terminal prompt.

http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sqlite.org/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
https://www.sqlitepro.com/
http://www.yunqa.de/delphi/doku.php/products/sqlitespy/index
http://www.yunqa.de/delphi/doku.php/products/sqlitespy/index

iOS Data Analysis and Recovery Chapter 5

[116]

SQLite special commands
Once you connect to a database, there are a number of built-in SQLite commands, which are
known as dot commands and can be used to obtain information from the database files.

You can obtain the list of special commands by issuing the .help command in the SQLite
prompt. These are SQLite-specific commands, and they do not require a semicolon at the
end of the command. The most commonly used dot commands include the following:

.tables: This lists all of the tables within a database. The following example
displays the list of tables found inside the sms.db database:

.schema table-name: This displays the SQL CREATE statement that was used
to construct the table. The following example displays the schema for the handle
table, which is found inside the sms.db database:

.dump table-name: This dumps the entire content of a table into SQL
statements. The following example displays the dump of the handle table, which
is found inside the sms.db database:

iOS Data Analysis and Recovery Chapter 5

[117]

.output file-name: This redirects the output to a file on the disk instead of
showing it on the screen.
.headers on: This displays the column title whenever you issue a SELECT
statement.
.help: This displays the list of available SQLite dot commands.
.exit: This disconnects from the database and exits the SQLite command shell.
.mode: This sets the output mode, where MODE can be .csv, HTML, tabs, and so
on.

Make sure that there is no space between the SQLite prompt and the dot
command; otherwise, the entire command will be ignored.

Standard SQL queries
In addition to the SQLite dot commands, standard SQL queries, such as SELECT, INSERT,
ALTER, DELETE, and more, can be issued to SQLite databases on the command line. Unlike
the SQLite dot commands, standard SQL queries expect a semicolon at the end of the
command.

Most of the databases that you will examine will contain only a reasonable number of
records, so you can issue a SELECT statement, which outputs all of the data contained in the
table. This will be covered in detail throughout this chapter.

Accessing a database using commercial tools
While manual examination of iOS SQLite database files is possible with the use of free tools,
most examiners prefer commercial support prior to digging manually into the files for
examination. The following is an example of how to examine a database using SQLite
Forensic Browser—a Windows-based tool by Sanderson Forensics, which can be found at
http:/​/​www.​sandersonforensics. ​com/ ​forum/ ​content. ​php.

http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php
http://www.sandersonforensics.com/forum/content.php

iOS Data Analysis and Recovery Chapter 5

[118]

Launch SQLite Forensics Browser and navigate to File | Open SQLite DB:

Opening a database in the Forensic Browser for SQLite

Once the SQLite DB file is opened, the examiner can access the various tables that are
contained within the database, leverage the tool to convert date/timestamps, and visually
look at the SQL queries being run behind the scenes to access the data.

iOS Data Analysis and Recovery Chapter 5

[119]

Once loaded, tables can be selected for parsing. Note that the tool displays the queries that
are being run behind the scenes to produce the output. These queries should be the same
ones that will be displayed manually later in this chapter. These queries can be used on a
Mac to validate your findings:

Examining the sms.db file in the Forensic Browser for SQLite

iOS Data Analysis and Recovery Chapter 5

[120]

All of the columns can be formatted to show the best version of the data. For example, the
date/timestamps highlighted in the preceding screenshot can be converted to Mac absolute
time within the tool, as discussed earlier in this chapter. Simply right-click on it and select
View column as:

Data conversion selection in the Forensic Browser for SQLite

iOS Data Analysis and Recovery Chapter 5

[121]

Once converted, the dates and time shown previously are converted to a format that is
easier to examine:

Data conversion output in the Forensic Browser for SQLite

All of the database files that are described next can be loaded, examined, and reported
using a tool such as SQLite Forensics Browser. In addition to this, the database files
explained in the following sections can be exported from SQLite Forensics Browser by
creating a report or exporting relevant files to include in your final forensic report.

Key artifacts – important iOS database files
Raw disk images, filesystems and logical dumps, and the backup that you extracted as per
the instructions in Chapter 3, Data Acquisition from iOS Devices and Chapter 4, Data Acquisition
from iOS Backups, should contain the following SQLite databases that may be important to
your investigation. Should these files not be recovered, make sure that you acquired the iOS
device correctly. The files that are shown in the following sections are extracted from an iOS
11 device. As Apple adds new features to the built-in applications with every iOS release,
the format of the files may vary for different iOS versions. More information regarding
important database files can be found at https:/ ​/​digital- ​forensics. ​sans. ​org/​media/
for585-​poster.​pdf. ​

https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf
https://digital-forensics.sans.org/media/for585-poster.pdf

iOS Data Analysis and Recovery Chapter 5

[122]

Address book contacts
The address book contains a wealth of information about the owner's personal contacts.
With the exception of third-party applications, the address book contains contact entries for
all of the contacts that are stored on the device. The address book database is a HomeDomain
file, and it can be found at
private/var/mobile/Library/AddressBook/AddressBook.sqlitedb. The
AddressBook.sqlitedb file contains several tables, of which the following three are of
particular interest:

ABPerson: This contains the name, organization, notes, and more for each
contact.
ABMultiValue: This contains phone numbers, email addresses, website URLs,
and more for the entries in the ABPerson table. The ABMultiValue table uses a
record_id file to associate the contact information with a ROWID from the
ABPerson table.
ABMultiValueLabel: This table contains labels to identify the kind of
information stored in the ABMultiValue table.

Some of the data stored within the AddressBook.sqlitedb file could be from third-party
applications. The examiner should manually examine the application file folders to ensure
that all the contacts are accounted for and examined.

While all the following commands can be run natively on a Mac, we are going to use
SQLPro for SQLite to examine the most common databases found on iOS devices and add
some commercial tools, where relevant, to show a variety of examination options. This is a
free tool that simplifies the process and provides a clear view of the data to the examiner.
Once the database is loaded, you can draft queries to examine the data most relevant to you
and the address book into a .csv file named AddressBook.csv:

iOS Data Analysis and Recovery Chapter 5

[123]

The AddressBook.sqlitedb file in SQLPro

iOS Data Analysis and Recovery Chapter 5

[124]

In the preceding screenshot, you can see the suggested query to parse data from the
ABPerson table. In later examples, table joins may be required to capture all of the
information. The query also converts the Mac absolute time into a readable form using the
SQLite datetime function. The results can be exported for insertion in your final forensic
report:

SQLPro output from the AddressBook.sqlitedb file

Note that favorites are called out in the Note section. Thus, when a user marks a contact as
a favorite, you may find this artifact. It is common for some columns to contain little to no
data.

Address book images
In addition to the address book's data, each contact may contain an image associated with
it. This image is displayed on the screen whenever the user receives an incoming call from a
particular contact. These images can be created by third-party applications that have access
to the contacts on the device. Often, the contact is linked to a third-party application profile
photo. The address book images database is a HomeDomain file, and it can be found at
/private/var/mobile/Library/AddressBook/AddressBookImages.sqlitedb.

iOS Data Analysis and Recovery Chapter 5

[125]

The address book images can be parsed manually, but using commercial software makes
this process much more practical. Most free and commercial tools will provide access to the
address book images. However, some tools will not make the link between the graphic and
the contact, which may require some manual rebuilding. Sometimes, the free solutions
work best when parsing simple data from iOS devices. Next, we will examine the address
book images in iExplorer, which was introduced in Chapter 4, Data Acquisition from iOS
Backups. In this example, we simply loaded the iOS dataset into iExplorer and navigated to
the AddressBookImages.sqlitedb file for examination:

Examining AddressBookImages.sqlitedb in iExplorer

In this example, we can see that Kathryn is a contact on the phone, and her profile picture is
being pulled from her Google account. Thus, the iPhone user in this example provided
Google access to the contacts and the link was made. This happens often with common
applications, such as Twitter, Facebook, Google, LinkedIn, and Instagram, to name a few.

iOS Data Analysis and Recovery Chapter 5

[126]

When the user links a picture from their phone or takes a picture using the camera and
assigns the photo as a contact, you will find no reference to a profile for the photo and the
output will resemble what is shown in the following screenshot for the contact:

Examining AddressBookImages.sqlitedb in iExplorer

Call history
Phone or FaceTime calls placed, missed, and received by the user are logged in the call
history along with other metadata, such as call duration, date/time, and more. The call
history database is a WirelessDomain file, and it can be found
at /private/var/mobile/Library/CallHistoryDB/CallHistory.storedata. The
CallHistory.storedata file was introduced with iOS 8 and is currently in use at the time
of writing (iOS 11). Keep in mind that most devices can be updated and will most likely
have data in both locations, which means that you need to be aware of how the data is
stored in each location and whether or not your tool is extracting data from each database.
For this reason, we will examine both in this section.

The ZCALLRECORD table in the CallHistory.storedata file contains the call history. It's
important to note that only a limited number of calls may be stored in the active database.
Just because the database removes the oldest record when space is needed does not mean
this data is deleted. It's simply in the free pages of the SQLite database file, and it can be
recovered using forensic tools or manually. The most important columns in
the ZCALLRECORD table are the following:

ZDATE: This column contains the timestamps of calls in Mac absolute time format.
ZDURATION: This column contains the duration of calls.

iOS Data Analysis and Recovery Chapter 5

[127]

ZLOCATION: This column contains the locations of phone numbers.
ZADDRESS: This column contains the phone numbers.
ZSERVICE_PROVIDER: This column contains the service providers; for example,
Phone, WhatsApp, Telegram, and so on.

You can run the following queries in the DB Browser for SQLite to parse the call history.
Afterwards, you can export it into a .csv file:

Examining CallHistory.storedata in the DB Browser for SQLite

SMS messages
The Short Message Service (SMS) database contains text and multimedia messages that
were sent from and received by the device along with the phone number of the remote
party, date and time, and other carrier information. Starting with iOS 5, iMessages data is
also stored in the SMS database. iMessage allows users to send SMS and MMS messages
over a cellular or Wi-Fi network to other iOS or OS X users, thus providing an alternative to
SMS. The SMS database is a HomeDomain file, and it can be found at
/private/var/mobile/Library/SMS/sms.db. This location has not changed as
iOS versions have been released.

iOS Data Analysis and Recovery Chapter 5

[128]

You can run the following queries in the DB Browser for SQLite to parse the SMS messages.
Afterwards, you can export it into a .csv file:

Examining sms.db in the DB Browser for SQLite

Calendar events
Calendar events that have been manually created by the user or synced using a mail
application or other third-party applications are stored in the calendar database. The
calendar database is a HomeDomain file and can be found at
/private/var/mobile/Library/Calendar/Calendar.sqlitedb.

iOS Data Analysis and Recovery Chapter 5

[129]

The CalendarItem table in the Calendar.sqlitedb file contains the calendar events
summary, description, start date, end date, and more. You can run the following queries in
the DB Browser for SQLite to parse the calendar:

Examining calendar.sqlitedb in the DB Browser for SQLite

Notes
The Notes database contains the notes that are created by the user using the device's built-
in Notes application. Notes is the simplest application, often containing the most sensitive
and confidential information. The Notes database is a HomeDomain file and can be found at
/private/var/mobile/Library/Notes/notes.sqlite.

iOS Data Analysis and Recovery Chapter 5

[130]

The ZNOTE and ZNOTEBODY tables in the notes.sqlite file contain the notes title, content,
creation date, modification date, and more. You can run the following queries to parse the
Notes database:

Examining notes in the DB Browser for SQLite

Safari bookmarks and cache
The Safari browser used on an Apple device allows users to bookmark their favorite
websites. The bookmarks database is a HomeDomain file, and it can be found at
/private/var/mobile/Library/Safari/Bookmarks.db. The Safari browser stores the
recently downloaded and cached data in a database. The database is a HomeDomain file and
can be found at
/private/var/mobile/Library/Caches/com.apple.mobilesafari/Cache.db.

The file contains cached URLs and the web server's responses along with the timestamps. In
addition to this, Safari stores information from various sites in the WebKit database that is
located in the /private/var/mobile/Library/WebKit/LocalStorage/ directory. The
directory contains unique databases for each website, as shown in the following screenshot:

iOS Data Analysis and Recovery Chapter 5

[131]

The LocalStorage folder contents

All of the Safari files can be extracted using queries, as already demonstrated. In addition to
Safari, other browsers can be used and can contain data on an iOS device. For this reason,
we recommend using a tool built to parse internet history to ensure that data is not
overlooked. Good forensic tools for solving this task are AXIOM or Internet Evidence
Finder by Magnet Forensics, Evidence Center by Belkasoft, and some others.

Photo metadata
A manifestation of the photos in the device's photo album is stored in a database located at
/private/var/mobile/Media/PhotoData/Photos.sqlite. The photo metadata
database file is a member of CameraRollDomain.

You can run the following queries to view the photos stored in the database. From here, you
can use the directory to locate the file path and the filename to track down the photo:

Examining photos.sqlite in the DB Browser for SQLite

iOS Data Analysis and Recovery Chapter 5

[132]

Consolidated GPS cache
Geolocation history of cell towers and Wi-Fi on the device is stored in a database that is
located at /private/var/root/Caches/locationd/consolidated.db. The database is
a member of RootDomain. It contains location information for cell towers that the device
came into close proximity with, as well as Wi-Fi networks that were available for the device
to connect to. This database is often used to place a person near a specific location, as this
data is cached to the database file without the user's consent.

The CompassCalibration table in the consolidated.db file contains the location
information along with the timestamps. The file, when opened with the DB Browser for
SQLite, displays the data, as shown in the following screenshot:

The Consolidated.db view with the DB Browser for SQLite

iOS Data Analysis and Recovery Chapter 5

[133]

Voicemail
The Voicemail database contains metadata about each voicemail that is stored on the
device that includes the sender's phone number, callback number, timestamp and message
duration, and more. The voicemail recordings are stored as AMR audio files that can be
played by any media player that supports the AMR codec (for example, QuickTime
Player). The voicemail database is a HomeDomain file, and it can be found at
/private/var/mobile/Library/Voicemail/voicemail.db, while the actual voicemail
recordings are stored in the /private/var/mobile/Library/Voicemail/ directory.

Property lists
A property list, commonly referred to as a plist, is a structured data format used to store,
organize, and access various types of data on an iOS device as well as a macOS device.
Plists are binary-formatted files, and they can be viewed using a Property List Editor,
which is capable of reading or converting the binary format to ASCII.

Plist files may or may not have a .plist file extension. To access the data stored in these
files, you need a tool that can read them. Some of the good free tools include the following:

Plist Editor for Windows, which can be downloaded
from http://www.icopybot.com/plist-editor.htm
The plutil command-line utility on macOS

You can also view the plist files using XCode. macOS includes the plutil command-line
utility by default. The command-line utility can easily convert the binary-formatted files
into human-readable files. In addition to this, most commercial forensic tools, such as
Oxygen Forensics, include great support to parse plist files.

iOS Data Analysis and Recovery Chapter 5

[134]

The following example displays the com.Apple.maps.plist file:

The com.Apple.maps.plist in XCode

Important plist files
Raw disk images or the backup that you extracted in Chapter 3, Data Acquisition from iOS
Devices and Chapter 4, Data Acquisition from iOS Backups should contain the following plist
files that are important for an investigation. The files displayed are extracted from an iOS 11
device. The file locations may vary for your iOS version.

iOS Data Analysis and Recovery Chapter 5

[135]

The HomeDomain plist files
The following are the HomeDomain plist files, which contain data that may be relevant to
your investigation:

/private/var/mobile/Library/Preferences/com.apple.mobilephone.p

list: This contains the last phone number entered into the keypad regardless of
whether it was dialed or not
/private/var/mobile/Library/Preferences/com.apple.mobilephone.s

peeddial.plist: This contains a list of the contacts that were added to the
phone's favorites list
/private/var/mobile/Library/Preferences/com.apple.AppSupport.pl

ist: This contains the country code that was used for the App Store on the device
/private/var/mobile/Library/Preferences/com.apple.Maps.plist:
This contains the last latitude, longitude, and address pinned in the Maps
application
/private/var/mobile/Library/Preferences/com.apple.mobiletimer.p

list: This contains a list of world clocks used
/private/var/mobile/Library/Preferences/com.apple.Preferences.p

list: This contains the keyboard language that was last used on the device
/private/var/mobile/Library/Preferences/com.apple.springboard.p

list: This contains a list of applications that are shown in the interface and iOS
version
/private/var/mobile/Library/Preferences/com.apple.mobiletimer.p

list: This contains information about the current time zone, timers, alarms,
and stopwatches
/private/var/mobile/Library/Preferences/com.apple.weather.plist

: This contains the cities for weather reports, date, and time of the last update
/private/var/mobile/Library/Preferences/com.apple.preferences.n

etwork.plist: This contains the status of Bluetooth and Wi-Fi networks
/private/var/mobile/Library/Preferences/com.apple.locationd.pli

st: This contains a list of application identifiers that use the location service on
the device
/private/var/mobile/Library/Preferences/com.apple.assistant.bac

kedup.plist: This will help an examiner to determine whether cloud
synchronization is enabled or not

iOS Data Analysis and Recovery Chapter 5

[136]

 /private/var/mobile/Library/Preferences/com.apple.commcenter.s

hared.plist: This contains the owner's phone number
/private/var/mobile/Library/Preferences/com.apple.conference.pl

ist: This contains the owner's email address
/private/var/mobile/Library/Preferences/com.apple.facetime.plis

t: This contains the last FaceTime number
/private/var/mobile/Library/Preferences/com.apple.icloud.findmy

deviced.FMIPAccounts.plist: This contains the history of iOS versions used
on the device; if the device is restored from a backup, this may include items
from the device the backup was originally created from
/private/var/mobile/Library/Preferences/com.apple.identityservi

ces.idstatuscache.plist: This contains the list of cached phone numbers
/private/var/mobile/Library/Preferences/com.apple.WebSheet.plis

t: This contains the SSID of the last wireless network the device was connected to
/private/var/mobile/Library/Preferences/com.apple.youtube.dp.pl

ist: This contains the last YouTube search term and the ID of the last video
watched
/private/var/mobile/Library/Safari/History.plist: This contains the
web-browsing history of Safari
/private/var/mobile/Library/Safari/SuspendState.plist: This
contains the web page title and the URL of all suspended web pages on Safari

The RootDomain plist files
The following RootDomain files listed should be examined for relevance to your
investigation:

/private/var/root/Library/Preferences/com.apple.preferences.net

work.plist: This contains information about whether airplane mode is
presently enabled on the device
/private/var/root/Library/Preferences/com.apple.MobileBackup.pl

ist: This contains the timestamp of when the device was last restored from the
backup, the device build version, and the backup build version
/private/var/root/Library/Caches/locationd/clients.plist: This
contains the location settings for applications and system services

iOS Data Analysis and Recovery Chapter 5

[137]

The WirelessDomain plist files
The following WirelessDomain plist file contains useful information to identify the SIM
card last used in the device and other information:

/private/wireless/Library/Preferences/com.apple.commcenter.plis
t

The SystemPreferencesDomain plist files
The two plist files containing data of evidentiary value from the
SystemPreferencesDomain files are as follows:

/private/var/preferences/SystemConfiguration/com.apple.network.

identification.plist: This contains networking information of the cached IP
/private/var/preferences/SystemConfiguration/com.apple.wifi.pli

st: This contains a list of previously known Wi-Fi networks and the last time
each one was connected to

Other important files
Apart from SQLite and plist files, several other locations may contain valuable information
to an investigation.

The other sources include the following:

Cookies
Keyboard cache
Photos
Thumbnails
Wallpaper
Recordings
Third-party applications

iOS Data Analysis and Recovery Chapter 5

[138]

Cookies
Cookies can be recovered from
/private/var/mobile/Library/Cookies/Cookies.binarycookies. This file is a
standard binary file containing cookies that are saved when web pages are accessed on the
device. This information can be a good indication of what websites the user has been
actively visiting. Keep in mind that third-party applications may also contain this file.

To convert the binary cookie to human-readable format, run the BinaryCookieReader.py
Python script on the cookie file, as shown in the following command (the Python script can
be downloaded here: https:/ ​/ ​gist. ​github. ​com/ ​sh1n0b1/ ​4bb8b737370bfe5f5ab8):

Parsing Cookies.binarycookies with BinaryCookieReader.py

https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8
https://gist.github.com/sh1n0b1/4bb8b737370bfe5f5ab8

iOS Data Analysis and Recovery Chapter 5

[139]

Keyboard cache
The keyboard cache is captured and saved in the dynamic-text.dat file. This file is
located at /private/var/mobile/Library/Keyboard/dynamic-text.dat and contains
the keyboard cache, which is comprised of text entered by the user. This text is cached as
part of the device's autocorrect feature, and it was designed to autocomplete the predictive
common words as well as cache words typed by the user on the device. The file keeps a list
of approximately 600 words per language that are used on the iOS device. Commonly, this
file is the only source of the artifact should the data be inaccessible, encrypted, or
permanently deleted from the iOS device.

The dynamic-text.dat is a binary file, and it can be viewed using a hex editor. This file
may contain passwords that are cached by the iOS device, and they can be used to achieve
brute force attacks on the device or an encrypted backup of the device. This is sometimes
one of the best artifacts recovered from an iOS device.

Photos
Photos are stored in a directory located at /private/var/mobile/Camera
Roll/Media/DCIM/, which contains the photos taken with the device's built-in camera,
screenshots, selfies, photo stream, recently deleted photos, and accompanying thumbnails.
Some third-party applications will also store photos taken in this directory. Every photo
stored in the DCIM folder contains Exchangeable Image File Format (EXIF) data. EXIF data
stored in the photo can be extracted using ExifTool, which can be downloaded from
https:/​/​sno.​phy. ​queensu. ​ca/ ​~phil/ ​exiftool/ ​. EXIF data may also contain the
geographical information when a photo is tagged with the user's geo location if the user has
enabled location permissions on the iOS device.

https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/
https://sno.phy.queensu.ca/~phil/exiftool/

iOS Data Analysis and Recovery Chapter 5

[140]

Thumbnails
Another source of important artifacts related to photos is the ithmb files. You can find these
files under /private/var/mobile/Camera Roll/Media/PhotoData/Thumbnails.
These files contain thumbnails not only for actual photos on the device, but also for deleted
ones. And, of course, there is a tool for parsing such files—iThmb Converter, which can be
downloaded from http:/ ​/ ​www. ​ithmbconverter. ​com/​en/ ​download/ ​:

Examining 3304.ithmb with iThmb Converter

Wallpaper
The current background wallpaper set for the iOS device can be recovered from the
LockBackgroundThumbnail.jpg file that is found in
/private/var/mobile/Library/SpringBoard/LockBackgroundThumbnail.jpg.

http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/
http://www.ithmbconverter.com/en/download/

iOS Data Analysis and Recovery Chapter 5

[141]

This is complemented with a thumbnail named in the same directory. The wallpaper
picture may contain identifying information about the user, which could help in a missing
persons case or an iOS device recovered from a theft investigation.

Recordings
The iPhone allows a user to record voice memos very easily. The recorded voice memos are
stored in the /private/var/mobile/Media/Recordings/ directory. Recordings here
could be used to identify a person, based on their voice, and they may also contain
information, such as voice reminders, which won't be stored in the calendar database.
Recordings provide a lot of information to the examiner as they are user-created and often
not deleted.

Downloaded applications
Third-party applications, which are downloaded and installed from the App Store,
including applications such as Facebook, WhatsApp, Viber, Threema, Tango, Skype, Gmail,
and more, contain a wealth of information that is useful for an investigation. Some third-
party applications use Base64 encoding, which needs to be converted for viewing purposes
as well as encryption. Applications that encrypt the database file may prevent the examiner
from accessing the data residing in the tables. Encryption varies among these applications
based on the application and iOS versions.

A unique subdirectory GUI is created for each application that is installed on the device in
the /private/var/mobile/App/ directory. Most of the files stored in the application's
directory are in the SQLite and plist format. Each file must be examined for relevance. We
recommend using Oxygen Forensics and Magnet AXIOM when possible to extract these
artifacts quickly before going back and manually running queries and parsing the data.

Apple Watch
Examining the Apple Watch is new and exciting. The good news is that the files found on
the watch are similar, if not the same, as those found on the iPhone. We are going to see the
data primarily existing in the SQLite database and plist files, and this is examined by
creating or examining an iPhone backup file. Remember that an iPhone running iOS 8.2 or
later is the only iOS device capable of being linked to an Apple Watch.

iOS Data Analysis and Recovery Chapter 5

[142]

One unique aspect about the Apple Watch is that the data pertaining to the watch is stored
in the mobile/Library/DeviceRegistry directory within the backup, which is shown in
the following screenshot:

The Apple Watch data directory

Here, you will find exact copies of files found on the iPhone. If the case relies on
determining what happened on the Apple Watch versus the iPhone, it may be impossible to
solve. As of Watch 2.0, the files that are used by both the iPhone and the watch are exact
copies of one another, and they do not contain status flags stating where the activity was
initiated. This is one of the hardest topics to cover in all aspects of data synchronization.
For example, if you examine my iPhone backup that contains my Apple Watch data, you
will see map information in mobile
/Library/DeviceRegistry/NanoMaps/GeoHistory.Mapsdata that occurred before the
Apple Watch was released. This should be impossible, but it's simply because Apple is
copying the iPhone maps database and placing a copy in the Apple Watch data location.
The following is an example of what data in the GeoHistory.Mapsdata file looks like
when being examined in UFED Physical Analyzer. While this tool is expensive, it is one of
the best analytical platforms for manually carving and hunting artifacts that relate to your
investigation. In this example, a keyword search was run for the term current
location within the GeoHistory.Mapsdata file. From these results, we can ascertain that
the user was at the address highlighted in the following screenshot when asking for or
researching directions on the iPhone or the Apple Watch. Remember, this is an exact copy
of the same file, so we currently cannot say whether this location was stamped by the Apple
Watch or the iPhone:

iOS Data Analysis and Recovery Chapter 5

[143]

The GeoHistory.Mapsdata in Physical Analyzer

Some of the more common Apple Watch artifacts that can be recovered include the
following:

AddressBook
GeoServices
Health
Mail
Passes
Preferences
PairdSync
Photos

This list is just a sample of the most popular items that we can recover data from on the
Apple Watch. Again, these artifacts primarily exist as SQLite and plist files within the
mobile /Library/DeviceRegistry/ directory. For Apple Watch identifiers, the binary
plist file located at mobile /Library/DeviceRegistry.state/properties.bin can be
examined to determine the watch name, make, model, OS, and GUID.

iOS Data Analysis and Recovery Chapter 5

[144]

Recovering deleted SQLite records
SQLite databases store the deleted records within the database itself, so it is possible to
recover deleted data, such as contacts, SMS, calendar, notes, email, voicemail, and more by
parsing the corresponding SQLite database. If a SQLite database is vacuumed or
defragmented, the likelihood of recovering the deleted data is minimal. The amount of
cleanup that these databases require relies heavily on the iOS version, the device, and the
user's settings on the device.

A SQLite database file comprises one or more fixed size pages, which are used just once.
SQLite uses a b-tree layout of pages to store indices and table content. Detailed information
on the b-tree layout can be found at https:/ ​/​github. ​com/ ​NotionalLabs/ ​SQLiteZer/ ​blob/
master/​_​resources/ ​Sqlite_ ​carving_ ​extractAndroidData. ​pdf.

Commercial forensic tools provide support to recover deleted data from SQLite database
files, but they don't always recover all of the data, nor do they support extracting data from
all databases on an iOS device. It is recommended that each database containing key
artifacts be examined for deleted data. The key artifacts, or databases, already discussed in
this book, should be examined using free parses, hex viewers, or even your forensic tool to
determine whether the user deleted artifacts that are relevant to the investigation.

To carve a SQLite database, you can examine the data in raw hex or use sqliteparse.py,
a free Python script developed by Mari DeGrazia. The Python script can be
downloaded from https:/ ​/​github. ​com/ ​mdegrazia/ ​SQlite- ​Deleted- ​Records- ​Parser.

The following example recovers the deleted records from the notes.sqlitedb file and
dumps the output to the output.txt file. This script should work on all database files
recovered from iOS devices. To validate your findings from running the script, simply
examine the database in a hex viewer to ensure nothing is overlooked:

$python sqliteparse.py -f notes.sqlitedb -r -o output.txt

In addition to this, performing a strings dump of the database file can also reveal deleted
records that may have been missed, as shown in the following command:

$strings notes.sqlitedb

https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/NotionalLabs/SQLiteZer/blob/master/_resources/Sqlite_carving_extractAndroidData.pdf
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser
https://github.com/mdegrazia/SQlite-Deleted-Records-Parser

iOS Data Analysis and Recovery Chapter 5

[145]

Should you prefer a GUI, Mari DeGrazia kindly created one and placed it
on her website at http:/ ​/ ​az4n6. ​blogspot. ​in/​.

Another open source tool you can use for SQLite deleted records recovery is Undark. You
can download it here: http:/ ​/​pldaniels. ​com/​undark/ ​. Here is how to use this tool:

./undark -i sms.db > sms_database.csv

It's important to note that Undark does not differentiate between current and deleted data,
so you will get the whole set of data, both actual and deleted.

Summary
This chapter covered various data analysis techniques and specified the locations for
common artifacts within the iOS device's filesystem. When writing this chapter, we aimed
to cover the most popular artifacts that tie into most investigations. Clearly, it is impossible
to cover them all. We hope that once you learn how to extract data from SQLite and plist
files, intuition and persistence will assist you in parsing the artifacts that were not covered.

Keep in mind that most open source and commercial tools are able to pull active and
deleted data from common database files, such as contacts, calls, SMS, and more, but they
often overlook the third-party application database files. Our best advice is to know how to
recover the data manually, just in case you need to validate your findings or testify to how
your tool functions.

We covered techniques to recover deleted SQLite records that prove useful in most iOS
device investigations. Again, the acquisition method, encoding, and encryption schemas
can affect the amount of data that you can recover during your examination.

In the next chapter, iOS Forensic Tools, we will introduce you to the big four of the iOS
forensics world—Cellebrite UFED Physical Analyzer, Magnet AXIOM, Oxygen Forensic
Detective, and Belkasoft Evidence Center.

http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://az4n6.blogspot.in/
http://pldaniels.com/undark/
http://pldaniels.com/undark/
http://pldaniels.com/undark/
http://pldaniels.com/undark/
http://pldaniels.com/undark/
http://pldaniels.com/undark/
http://pldaniels.com/undark/
http://pldaniels.com/undark/
http://pldaniels.com/undark/
http://pldaniels.com/undark/

6
iOS Forensic Tools

An examiner must not only know how to use forensic tools, but must also understand the
methods and acquisition techniques deployed by the tools they use in their investigations.
Forensic tools not only save time, but also make the process a lot easier. However, each tool
has its flaws, and the examiner must catch any mistakes and know how to correct them by
leveraging another tool or technique. It's impossible for a tool to support all devices, and the
examiner is responsible for learning and using the best tools to complete the job. As
discussed in the previous chapters, the examiner must understand how data is stored on
iOS devices, to ensure that the tool is capturing all accessible data. Without an expectation
of what their forensic tool should extract, the examiner is limited and will be forced to rely
solely on a tool.

Currently, there are a number of commercial tools, such as Elcomsoft iOS Forensic Toolkit,
Cellebrite (UFED4PC, Touch, and Physical Analyzer), BlackLight, Oxygen Forensic
Detective, AccessData MPE+, EnCase, Belkasoft Evidence Center, MSAB XRY, and many
more, which are available for forensic acquisition and the analysis of iOS devices. For
familiarity purposes, this chapter will walk you through the usage of a few of them and
provide details of the steps required to perform acquisitions and analysis of iOS devices.

In this chapter, we will cover the following topics:

Working with Cellebrite UFED Physical Analyzer
Working with Magnet AXIOM
Working with Oxygen Forensic Detective
Working with Belkasoft Evidence Center

iOS Forensic Tools Chapter 6

[147]

Working with Cellebrite UFED Physical
Analyzer
As per the vendor, Cellebrite Universal Forensic Extraction Device (UFED) empowers law
enforcement, antiterrorism, and security organizations to capture critical forensic evidence
from mobile phones, smartphones, PDAs, and portable handset varieties, including updates
for newly released models. The tool enables forensically sound data extraction, decoding,
and analysis techniques to obtain existing and deleted data from different mobile devices.
As of December 2017, UFED supports data extraction from more than 18,000 mobile
devices.

Cellebrite UFED Physical Analyzer can be used to perform physical and advanced logical
acquisitions of iOS devices. Advanced logical acquisitions are the same as filesystem
acquisitions in which access to the filesystem data is provided. Physical acquisition on iOS
devices using the A5-A11 chips (iPhone 4s and newer) is not possible using this tool. Thus,
the advanced logical acquisition method is the best support and will pull the most data
from these devices if they are unlocked (even if they are not jailbroken). If the device is
jailbroken, additional data can be extracted. Cellebrite Physical Analyzer is available only
for Windows platforms.

For more information, visit https:/ ​/​www. ​cellebrite. ​com/ ​en/ ​products/
ufed- ​ultimate/ ​.

Features of Cellebrite UFED Physical Analyzer
The following are features of Cellebrite UFED Physical Analyzer:

It supports physical and advanced logical acquisition (filesystem acquisition)
It extracts device keys required to decrypt raw disk images as well as keychain
items
It decrypts raw disk images and keychain items
It reveals device passwords (not available for all locked devices)
It allows the examiner to open an encrypted raw disk image file with a known
password

https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/
https://www.cellebrite.com/en/products/ufed-ultimate/

iOS Forensic Tools Chapter 6

[148]

It supports passcode recovery attacks
It supports advanced analysis and decoding of extracted application data
The platform provides access to physical and logical data extracted in the same
user interface, making analysis easier
It reports generation in several popular formats: Microsoft Excel, PDF, HTML,
and more
It has the ability to dump the raw filesystem partition to import and examine it in
another forensic tool
It creates a binary image file, in addition to the UFED shortcut file, for ease of
importing into other forensic tools for verification

Advanced logical acquisition and analysis
with Cellebrite UFED Physical Analyzer
As already mentioned, Physical Analyzer can be used not only for parsing different types of
forensic artifacts from acquired images, but can also be used, for iOS devices, for
performing both logical and physical types of extraction. Due to the fact that physical
acquisition is actually only for older devices, the best option is an advanced logical
acquisition.

We are going to acquire and analyze data from an iPhone running iOS 11.2.1:

Connect the device through the appropriate cable to your workstation, make sure1.
it's trusted with it, and launch Physical Analyzer.

iOS Forensic Tools Chapter 6

[149]

Go to Extract | iOS Device Extraction, and the iOS Device Data Extraction2.
Wizard window will pop up:

Choosing an extraction type

As we are dealing with a modern iOS device, let's choose Advanced Logical3.
extraction. If the device is recognized, you'll see the device's name, its UDID, and
also its iOS version:

Connecting the device

iOS Forensic Tools Chapter 6

[150]

In our case, the iPhone's iTunes backup is protected with a known password, so4.
the best method is Method 1:

Choosing the extraction method

It's time to choose where the data will be saved; in our case, it's the root of5.
the D:\ drive:

Choosing where to save the extraction

iOS Forensic Tools Chapter 6

[151]

Now the acquisition process will be started. Make sure the device is connected6.
until the end of the process:

Extracting the data

Once the extraction process is finished, the extracted data will be parsed with
powerful Physical Analyzer plugins. As a result, you will get a set of artifacts
divided into a number of categories:

Phone data extracted and parsed by Physical Analyzer

iOS Forensic Tools Chapter 6

[152]

The same can be said about the data files:

Data files extracted by Physical Analyzer

As you may have already noticed, there are red numbers in brackets—these are deleted
records recovered by Physical Analyzer plugins. And it's not a miracle, as you already
know, that deleted data can be recovered from SQLite databases, which are widely used in
iOS.

Talking about SQLite databases again, there is another amazing feature of Physical
Analyzer, which might be useful for adding custom artifacts to your mobile forensics
reports and parsing unknown apps data—the SQLite wizard. You can find it under Tools |
SQLite wizard.

Let's start by choosing a database. Of course, it's good to choose an app that isn't parsed by
Physical Analyzer automatically; in our example, it's an app called Scan:

Selecting a database

iOS Forensic Tools Chapter 6

[153]

Make sure you have selected the Include deleted rows option; this will help to recover data
automatically but, of course, it will increase the number of false positive records:

Starting the SQLite wizard

So, our app is used for scanning QR codes and contains four columns of interest—the scan
date and time, latitude, longitude, and scan result. All of the rows are part of
ZSCSCANEVENT:

iOS Forensic Tools Chapter 6

[154]

Choosing database tables and columns

You've already learned quite a bit about iOS timestamps and should recognize the format in
ZTIMELESSCREATIONDATE, but even if you don't, SQLite wizard does it for you:

Selecting the timestamp format

iOS Forensic Tools Chapter 6

[155]

The generic model will suit any database, but also there are some existing Physical
Analyzer models that can be used for typical content, for example, Chats or Contacts. In our
case, we are using the generic model:

Choosing the model

Once you've chosen the model and field types for the column, you can run the query and
add the new parsed artifacts to your extraction and, afterward, to your report.

iOS Forensic Tools Chapter 6

[156]

Working with Magnet AXIOM
Magnet AXIOM is one of the most useful digital forensics tools on the market. It can be
used both for computer and mobile forensics; the recent version of the suite introduced the
newest feature—cloud forensics. As for iOS forensics, it can be used both for logical and
filesystem acquisitions, and supports all iOS versions—from the oldest to the latest. Of
course, it can be used for parsing iTunes backups and physical images created by third-
party tools, for example, Elcomsoft iOS Forensic Toolkit.

One of the best features of Magnet AXIOM is its ability to start processing extraction data
on the fly, so you don't have to wait for the acquisition process to be finished to start your
forensic analysis.

Features of Magnet AXIOM
The following are features of Magnet AXIOM:

It supports logical and filesystem (for jailbroken devices) acquisitions
It supports both encrypted and unencrypted iTunes backups
It recovers more than 500 artifact types
It's designed to work with other popular mobile forensics tools, for example,
Cellebrite UFED, XRY, and others
It includes built-in SQLite and plist viewers
It is able to create so-called Portable Cases, so an examiner can share the whole
set of data to his or her teammates and third parties
It allows an examiner to generate reports in several popular formats: Microsoft
Excel, PDF, HTML, and more

iOS Forensic Tools Chapter 6

[157]

Logical acquisition and analysis with Magnet
AXIOM
As you remember, the most common acquisition for modern iOS devices is a logical type.
Here is how to acquire an iOS device with Magnet AXIOM:

Start by creating a new case:1.

Creating a new case

iOS Forensic Tools Chapter 6

[158]

As we are dealing with an iOS device, we will choose the MOBILE option:2.

Selecting the evidence source

iOS Forensic Tools Chapter 6

[159]

There are a number of options, but in our case, the IOS option is the right one:3.

Selecting the evidence source

iOS Forensic Tools Chapter 6

[160]

There are two options—we can choose an already-acquired image (for example,4.
iTunes backup or a physical image acquired by a third-party tool), or extract data
from the device. Let's choose the second option:

Choosing to acquire evidence

iOS Forensic Tools Chapter 6

[161]

Our device is recognized and ready to be imaged. If you don't see your device,5.
use the UNKNOWN option:

Selecting the device

iOS Forensic Tools Chapter 6

[162]

There are two types of extraction—Quick and Full. The Full option is available6.
only if the device you want to acquire is jailbroken; in our case, it's not:

Choosing the image type

You will be prompted to enter the password for the backup; as you will7.
remember, this way you can get more data, so it's highly recommended:

Encrypting the backup

iOS Forensic Tools Chapter 6

[163]

Before the acquisition and processing are started, you can choose keywords of8.
interest, import hashes for known-good files, and configure Dynamic App
Finder:

Processing details

Dynamic App Finder is a Magnet IEF and AXIOM feature capable of
finding potential mobile chat app databases located on images. You can
read more about this feature here: https:/ ​/​www. ​magnetforensics. ​com/
mobile- ​forensics/ ​using- ​dynamic- ​app-​finder- ​to-​recover- ​more-
mobile- ​artifacts/ ​.

https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/
https://www.magnetforensics.com/mobile-forensics/using-dynamic-app-finder-to-recover-more-mobile-artifacts/

iOS Forensic Tools Chapter 6

[164]

You can customize MOBILE ARTIFACTS; for example, if you are interested only9.
in chats, it's better to choose only these types of artifacts, as they will shorten the
processing time:

Selecting mobile artifacts

iOS Forensic Tools Chapter 6

[165]

The ANALYZE EVIDENCE button will start the acquisition and analysis process:10.

Imaging the evidence source

There are two windows of Magnet AXIOM—Process and Examine. The first can10.
be used to monitor the process of acquiring and processing the evidence source,
the second to analyze the extracted and parsed data. And as already mentioned,
you can start the analysis before the processing phase is ended; all you need to do
is click on LOAD NEW RESULTS in Magnet Examine:

Loading new results

iOS Forensic Tools Chapter 6

[166]

Once the processing stage is over, you can find the parsed data in the MOBILE11.
section of Magnet Examine:

The MOBILE section

But, of course, it won't include everything; there are other valuable sections in
which you can find evidence extracted from the iOS device, for example, CHAT,
MEDIA, and DOCUMENTS.

Working with Belkasoft Evidence Center
Belkasoft Evidence Center is one more popular digital forensics tool capable of acquisition
and analysis of iOS devices. Like AXIOM, it can be used for computer, mobile, and cloud
forensics.

One of the best features of Belkasoft Evidence Center is its ability to deal with damaged
iTunes backups. So if you have a backup none of your tools are able to process, try Belkasoft
Evidence Center; according to our experience, it will process it successfully.

Features of Belkasoft Evidence Center
The following are features of Belkasoft Evidence Center:

It supports logical and filesystem (for jailbroken devices) acquisitions
It supports both encrypted and unencrypted iTunes backups
It supports damaged iTunes backups

iOS Forensic Tools Chapter 6

[167]

It recovers more than 700 artifact types
It's designed to work with other popular mobile forensics tools, for example,
Cellebrite UFED, and XRY
It includes built-in SQLite and plist viewers
It includes a free scripting module, BelkaScript, allowing examiners to write their
own scripts to automate some common tasks
It allows an examiner to generate reports in several popular formats: Microsoft
Excel, PDF, HTML, and more

 iTunes backup parsing and analysis
with Belkasoft Evidence Center
As backup processing and analysis is one of the best features of Belkasoft Evidence Center,
here we are going to walk you through this process:

Let's start by creating a new case:1.

Creating a new case

iOS Forensic Tools Chapter 6

[168]

There are multiple options here—you can process a previously acquired image,2.
for example, iTunes backup, or choose to extract data from a device first. As we
have decided to work with an iTunes backup, let's choose the Mobile image
option:

Choosing the data source

iOS Forensic Tools Chapter 6

[169]

Make sure you choose only iOS-related artifacts; this will decrease the processing3.
time:

Choosing data types

iOS Forensic Tools Chapter 6

[170]

Once processing is finished, extracted artifacts will be shown in the Case4.
Explorer tab:

Case Explorer tab

The overview of extracted data is shown in the Overview tab:5.

Overview tab

iOS Forensic Tools Chapter 6

[171]

Finally, if you want to browse the filesystem of your forensic image, use the6.
Filesystem tab:

Filesystem tab

iOS Forensic Tools Chapter 6

[172]

Other available tabs may be useful too—the Dashboard tab shows you all
available info about the case you are currently working on, the Process Monitor
tab allows you to monitor processing progress, and the Search Results tab shows
you keyword search results.

Working with Oxygen Forensic Detective
Oxygen Forensic Detective is a piece of advanced forensic software capable of extracting
and analyzing data from cell phones, smartphones, PDAs, and other mobile devices. The
software provides not only acquisition support, but also advanced application parsing and
analysis support. Currently, Oxygen Forensic Detective version 10 supports more than
17,000 different models of mobile devices.

Oxygen Forensic Detective uses proprietary low-level protocols to extract data from
smartphones. Besides data extraction, Oxygen Forensic Detective also gives you the
opportunity to import a backup or image file obtained using other forensic tools, such as
Cellebrite, Elcomsoft, XRY, iTunes, and open source tools for data analysis. It also stores the
database of all the analyzed devices so that you can always view the previously extracted
data.

Features of Oxygen Forensic Detective
The following are the features of Oxygen Forensic Detective:

It supports logical filesystem and physical acquisition. Logical acquisition
recovers the active files on the device. Deleted data may be obtained if the SQLite
database is recovered. Physical and filesystem acquisition provides access to the
raw filesystem data of the iOS device.
It supports password recovery from a keychain.
It enables cloud data extraction and decryption.
It reads backup or images obtained using other forensic tools.
It provides rooting and jailbreaking assistance for devices.
The timeline provides a single-place access to all the user's activities and
movements, arranged by date and time.
It supports aggregated contacts. This automatically combines accounts from
different sources into one metacontact for each person.

iOS Forensic Tools Chapter 6

[173]

Make sure that you know where the data is coming from! You should
manually examine each file to ensure that nothing is overlooked and that
the data is being reported correctly.

It recovers deleted data automatically and provides the examiner with a tool to
carve additional artifacts from SQLite databases.
It provides access to raw files for manual analysis.

Note that these are the raw database files associated with each application,
they are not always the raw filesystem partitions.

It provides an intuitive and user-friendly UI to browse through the extracted
data.
It provides keyword lists and a regular expression library in order to search.
It supports report generation in several popular formats—Microsoft Excel, PDF,
HTML, and more.

Logical acquisition and analysis with Oxygen
Forensic Detective
The acquisition of an iOS device is simple and straightforward with Oxygen Forensic
Detective. The software helps you to connect a device in several mouse clicks, and
downloads all the available device information in just a few minutes for a logical
acquisition.

iOS Forensic Tools Chapter 6

[174]

To perform the acquisition of an iOS device using Oxygen Forensic Extractor (the wizard
that is used in Oxygen Forensic Detective), follow these steps:

Launch Oxygen Forensic Detective and click on the Connect new device button.1.
You will be prompted to choose the connection mode, as shown in the following
screenshot:

Oxygen Forensic Extractor

iOS Forensic Tools Chapter 6

[175]

Connect the iOS device to the computer using a USB cable and choose Automatic2.
connection settings. Oxygen Forensic Extractor detects the connected device and
displays the device information, as shown in the following screenshot. You can
also manually choose your device:

Connecting the device

iOS Forensic Tools Chapter 6

[176]

Click on Next. It prompts you to fill in the information about the device and the3.
case. Here you can also make your backup encrypted, and decide whether
application data should be parsed (including deleted data) or you just want an
forensic image:

Filling in the device info

iOS Forensic Tools Chapter 6

[177]

Now we are ready to start the extraction process. As you can see in the following4.
screenshot, Oxygen Forensic Detective is using the iTunes backup service to
create a logical image:

Data extraction process

Once the extraction process is finished and application data is processed and
parsed, you will see a forensic artifacts overview:

Extracted data overview

iOS Forensic Tools Chapter 6

[178]

Now the data is ready to be analyzed. You can use only automatically extracted
artifacts to find evidence, or go for in-depth manual analysis with the help of
filesystem browser, hex, SQLite, and plist viewers.

Summary
Forensic tools are helpful for an examiner as they not only save time, but also make the
process a lot easier. However, not everyone has a budget large enough to purchase
commercial tools to obtain iOS acquisition. While free tools exist for acquisition, support
may be limited and multiple extractions may be required to obtain the same amount of data
as a commercial tool.

For jailbroken devices, the iOS device could be connected to a Mac for live examination
through SSH, which is how some of the tools acquire the data. However, this is not a
method that is recommended for those new to digital forensics. For such purposes, this
chapter introduced you to several available iOS forensic tools and included the steps to
perform acquisition from an iOS device.

Examiners should take further steps to validate and understand each tool that might be
used as part of an investigation. We recommend acquiring test devices with known data to
ensure that nothing is overlooked, evidence is not altered, and the methods provide the
examiner with access to the data of interest, where possible.

The next chapter introduces Android forensics and covers the fundamental concepts of the
Android platform.

7
Understanding Android

In the previous chapters, we covered details about iOS devices, including the file system
structure, key artifacts, backup files, and acquisition and analysis methods. Starting with
this chapter, we will focus on the Android platform and how to perform forensics on
Android devices. Having a good understanding of the Android ecosystem, security
constraints, file systems, and other features proves useful during forensic investigation.
Gaining knowledge of these fundamentals would help a forensic expert to make informed
decisions while conducting an investigation.

We will cover the following topics in this chapter:

The Android model
Android security
The Android file hierarchy
The Android file system

Understanding Android Chapter 7

[180]

The evolution of Android
Before we take a dive into the ocean of Android, let's first spend some time discussing the
evolution of Android, or what we call The Android Story. Back in 2005, Google started
investing money in start-up companies that it thought would be profitable in the future.
Android Inc., founded in 2003 by Andy Rubin, Rich Miner, Nick Sears, and Chris White,
was one such company acquired by Google that later turned out to be the best deal ever.
During its first two years, Android Inc. operated under secrecy. It described itself as a
company making software for mobile phones. Rubin later stayed with Google to pioneer
Android as an operating system that revolutionized the way mobile handsets operate. With
this acquisition, it was clear that Google was eyeing the mobile phone market. At Google,
Rubin, along with his team, developed a powerful and flexible operating system built on a
Linux kernel. There was speculation everywhere about what Google was trying to do. Some
reported that Google was trying to incorporate search and other applications into mobile
handsets. A few others reported that Google was developing its own mobile handset.
Finally, in 2007, Open Handset Alliance (OHA), a group of technology companies, device
manufacturers, chipset makers, and wireless carriers, was formed with the main objective of
proposing open standards for the mobile platform. Together, they developed Android—the
first open and free mobile platform built on Linux kernel 2.6. Later, in 2008, HTC Dream
was released, which was the first phone to run the Android operating system. After that, it
was a dream run for Android, with its market share increasing exponentially over the next
few years. At the time of writing this book, Android remains by far the most used OS
throughout the world. According to IDC, in the first quarter of 2017, Android dominated
the industry with an 85% market share. Since its release in 2007, Android has come up with
various versions. The most recent major Android update is Android 8.0, dubbed Oreo,
which was released in August 2017. Several versions of its Linux-based OS have been
released in alphabetical order.

The following is an overview of Android version history:

Version Version name Release year

Android 1.0 Apple pie 2008

Android 1.1 Banana bread 2009

Android 1.5 Cupcake 2009

Android 1.6 Donut 2009

Android 2.0 Eclair 2009

Android 2.2 Froyo 2010

Understanding Android Chapter 7

[181]

Android 2.3 Gingerbread 2010

Android 3.0 Honeycomb 2011

Android 4.0 Ice Cream Sandwich 2011

Android 4.1 Jelly Bean 2012

Android 4.4 KitKat 2013

Android 5.0 Lollipop 2014

Android 6.0 Marshmallow 2015

Android 7.0 Nougat 2016

Android 8.0 Oreo 2017

The Android model
To effectively understand the forensic concepts of Android, it would be helpful to have a
basic understanding of the Android architecture. Just like a computer, any computing
system that interacts with the user and performs complicated tasks requires an operating
system to handle the tasks effectively. This operating system (whether it's a desktop
operating system or a mobile phone operating system) takes the responsibility of managing
the resources of the system and to provide a way for the applications to talk to the
hardware or physical components to accomplish certain tasks. Android is currently the
most popular mobile operating system designed to power mobile devices. You can find out
more about this at: https://developer.android.com/about/android.html.

Android is open source and the code is released under the Apache license. Practically, this
means anyone (especially device manufacturers) can access it, freely modify it, and use the
software according to the requirements of any device. This is one of the primary reasons for
its wide acceptance. Notable players that use Android include Samsung, HTC, Sony, and
LG.

https://developer.android.com/about/android.html

Understanding Android Chapter 7

[182]

As with any other platform, Android consists of a stack of layers running one above the
other. To understand the Android ecosystem, it's essential to have a basic understanding of
what these layers are and what they do. The following figure summarizes the various layers
involved in the Android software stack:

Android architecture referenced from: https://developer.android.com/guide/platform/index.html

Understanding Android Chapter 7

[183]

Each of these layers performs several operations that support specific operating system
functions. Each layer provides services to the layers lying on top of it.

The Linux kernel layer
Android OS is built on top of the Linux kernel, with some architectural changes made by
Google. There are several reasons for choosing the Linux kernel. Most importantly, Linux is
a portable platform that can be compiled easily on different hardware. The kernel acts as an
abstraction layer between the software and hardware present on the device. Consider the
case of a camera click. What happens when you take a photo using the camera button on
your device? At some point, the hardware instruction (pressing a button) has to be
converted to a software instruction (to take a picture and store it in the gallery). The kernel
contains drivers to facilitate this process. When the user presses on the button, the
instruction goes to the corresponding camera driver in the kernel, which sends the
necessary commands to the camera hardware, similar to what occurs when a key is pressed
on a keyboard. In simple words, the drivers in the kernel command control the underlying
hardware. As shown in the preceding figure, the kernel contains drivers related to Wi-Fi,
Bluetooth, USB, audio, display, and so on.

The Linux kernel is responsible for managing the core functionality of Android, such as
process management, memory management, security, and networking. Linux is a proven
platform when it comes to security and process management. Android has taken leverage
of the existing Linux open source OS to build a solid foundation for its ecosystem. Each
version of Android has a different version of the underlying Linux kernel. The
Marshmallow Android version is known to use Linux kernel 3.18.10, whereas the Nougat
version is known to use Linux kernel 4.4.1.

The Hardware Abstraction Layer
The device hardware capabilities are exposed to the high-level Java framework through the
Hardware Abstraction Layer (HAL). The HAL consists of several library modules that
implement interfaces for a specific type of hardware component. This allows hardware
vendors to implement functionality without changing the higher-level system.

Understanding Android Chapter 7

[184]

Libraries
The next layer in the Android architecture consists of Android's native libraries. The
libraries are written in the C or C++ language and help the device to handle different kinds
of data. For example, the SQLite libraries are useful for storing and retrieving the data from
a database. Other libraries include Media Framework, WebKit, Surface Manager, and SSL.
The Media Framework library acts as the main interface to provide a service to the other
underlying libraries. The WebKit library provides web pages in web browsers, and the
surface manager maintains the graphics. In the same layer, we have Android Runtime and
core libraries. The Android runtime is responsible for running applications on Android
devices. The term runtime refers to the lapse in time from when an application is launched
until it is shut down.

Dalvik virtual machine
All the applications that you install on the Android device are written in the Java
programming language. When a Java program is compiled, we get bytecode. A virtual
machine is an application that acts as an operating system, that is, it is possible to run a
Windows OS on a Mac or vice versa using a virtual machine. JVM is one such virtual
machine that can execute the previously mentioned bytecode. But, Android versions before
use something called Dalvik virtual machine (DVM) to run their applications.

DVM runs Dalvik bytecode, which is Java bytecode converted by the Dex compiler. Thus,
the .class files are converted to dex files using the dx tool. Dalvik bytecode, when
compared with Java bytecode, is more suitable for low-memory and low-processing
environments. Also, note that JVM's bytecode consists of one or more .class file
depending on the number of Java files that are present in an application, but Dalvik
bytecode is composed of only one dex file. Each Android application runs its own instance
of DVM. This is a crucial aspect of Android security and will be addressed in detail in
Chapter 8, Android Forensic Setup and Pre-Data Extraction Techniques.

Understanding Android Chapter 7

[185]

The following figure provides an insight into how Android's DVM differs from Java's JVM:

JVM versus DVM

Android Runtime (ART)
From Android 5.0 Lollipop version onward, Dalvik was replaced by Android Runtime
(ART). As discussed previously, earlier versions of Android used trace-based just-in-time
(JIT) compilation with Dalvik. In trace-based JIT, frequently executed operations are
identified and dynamically compiled to native machine code. This native execution of these
frequently used bytecodes, called traces, provides significant performance improvements.
Unlike Dalvik, ART uses ahead-of-time (AOT) compilation, which compiles entire
applications into native machine code upon their installation. This would automatically
increase the install time for an application, but a major advantage is that this eliminates
Dalvik's interpretation and trace-based JIT compilation, and thereby increases efficiency
and reduces power consumption. ART uses a utility called dex2oat that accepts DEX files as
input and generates a compiled app executable for the target device. With ART, the
optimised dex (.odex) files are replaced with the Executable and Linkable Format (ELF)
executables.

Understanding Android Chapter 7

[186]

The Java API framework layer
The application framework is the layer responsible for handling the basic functioning of a
phone, such as resource management, handling calls, and so on. This is the block with
which the applications installed on the device directly talk to it. The following are some of
the important blocks in the application framework layer:

Telephony manager: This block manages all the voice calls
Content provider: This block manages the sharing of data between different
applications
Resource manager: This block helps manage various resources used in
applications

The system apps layer
This is the topmost layer where the user can interact directly with the device. There are two
kinds of application—preinstalled applications and user-installed applications. Preinstalled
applications, such as dialer, web browser, contacts, and more, come along with the device.
User-installed applications can be downloaded from different places, such as Google Play
Store, Amazon Marketplace, and so on. Everything that you see on your phone (contacts,
mail, camera, and so on) is an application.

Android security
Android was designed with a specific focus on security. Android as a platform offers and
enforces certain features that safeguard the user data present on the mobile through multi-
layered security. There are certain safe defaults that will protect the user, and certain
offerings that can be leveraged by the development community to build secure applications.
The following are issues that are to be kept in mind while incorporating Android security
controls:

Protecting user-related data
Safeguarding the system resources
Making sure that one application cannot access the data of another application

The next few sections will help us understand more about Android's security features and
offerings.

Understanding Android Chapter 7

[187]

A detailed explanation on Android security can be found
at: https://source.android.com/security/.

Secure kernel
Linux has evolved as a trusted platform over the years, and Android has leveraged this fact
using it as its kernel. The user-based permission model of Linux has in fact worked well for
Android. As mentioned earlier, there is a lot of specific code built into the Linux kernel.
With each Android version release, the kernel version has also changed. The following table
shows Android versions and their corresponding kernel versions:

Android version Linux kernel version

1 2.6.25

1.5 2.6.27

1.6 2.6.29

2.2 2.6.32

2.3 2.6.35

3.0 2.6.36

4.0 3.0.1

4.1 3.0.31

4.2 3.4.0

4.2 3.4.39

4.4 3.8

5.0 3.16.1

6.0 3.18.1

7.0 4.4.1

https://source.android.com/security/

Understanding Android Chapter 7

[188]

The permission model
As shown in the following screenshot, any Android application must be granted
permissions to access sensitive functionality, such as the internet, dialer, and so on, by the
user. This provides an opportunity for the user to know in advance which functionality on
the device is being accessed by the application. Simply put, it requires the user's permission
to perform any kind of malicious activity (stealing data, compromising the system, and so
on).

This model helps the user to prevent attacks, but if the user is unaware and gives away a lot
of permissions, it leaves them in trouble (remember, when it comes to installing malware on
any device, the weakest link is always the user).

The permission model in Android

Understanding Android Chapter 7

[189]

Until Android 6.0, users needed to grant the permissions during install time. Users had to
either accept all the permissions or not install the application. But, starting from Android
6.0, users grant permissions to apps while the app is running. This new permission system
also gives the user more control over the app's functionality by allowing the user to grant
selective permissions. For example, a user can deny a particular app access to his location,
but provide access to the internet. The user can revoke the permissions at any time by going
to the app's Settings screen.

Application sandbox
In Linux systems, each user is assigned a unique user ID (UID), and users are segregated
so that one user cannot access the data of another user. However, all applications under a
particular user are run with the same privileges. Similarly, in Android, each application
runs as a unique user. In other words, a UID is assigned to each application and is run as a
separate process. This concept ensures an application sandbox at the kernel level. The
kernel manages the security restrictions between the applications by making use of existing
Linux concepts, such as UID and GID. If an application attempts to do something malicious,
say to read the data of another application, this is not permitted as the application does not
have user privileges. Hence, the operating system protects an application from accessing the
data of another application.

Secure inter-process communication
Android offers secure inter-process communication through which one's activity in an
application can send messages to another activity in the same application or a different
application. To achieve this, Android provides inter-process communication (IPC)
mechanisms: intents, services, content providers, and so on.

Application signing
It is mandatory that all of the installed applications are digitally signed. Developers can
place their applications in Google's Play Store only after signing the applications. The
private key with which the application is signed is held by the developer. Using the same
key, a developer can provide updates to their application, share data between the
applications, and so on.

Understanding Android Chapter 7

[190]

Security-Enhanced Linux
Security-Enhanced Linux (SELinux) is a security feature that was introduced in Android
4.3 and fully enforced in Android 5.0. Until this addition, Android security was based on
Discretionary Access Control (DAC), which means applications can ask for permissions,
and users can grant or deny those permissions. Thus, malware can create havoc on phones
by gaining those permissions. But, SE Android uses Mandatory Access Control (MAC),
which ensures that applications work in isolated environments. Hence, even if a user
installs a malware app, the malware cannot access the OS and corrupt the device. SELinux
is used to enforce MAC over all the processes, including the ones running with root
privileges. SELinux operates on the principle of default denial: anything that is not
explicitly allowed is denied. SELinux can operate in one of the two global modes:
permissive mode, in which permission denials are logged but not enforced, and enforcing
mode, in which denials are both logged and enforced. More details about SELinux can be
found at: https://source.android.com/security/selinux/concepts.

Full Disk Encryption
With Android 6.0 Marshmallow, Google has mandated Full Disk Encryption (FDE) for
most devices, provided that the hardware meets certain minimum standards. Encryption is
the process of converting data into cipher text using a secret key. On Android devices, full
disk encryption refers to the process of encrypting all user data using a secret key. This key
is then encrypted by the lock screen PIN/pattern/password before being securely stored in a
trusted location. Once a device is encrypted, all user-created data is automatically
encrypted before writing it to disk, and all reads automatically decrypt data before
returning it to the calling process. Full disk encryption in Android works only with an
Embedded Multimedia Card (eMMC) and similar flash devices that present themselves to
the kernel as block devices.

Staring from Android 7.x, Google decided to shift the encryption feature from full-disk
encryption to file-based encryption. In file-based encryption, different files are encrypted
with different keys. By doing so, those files can be unlocked independently without
requiring an entire partition to be decrypted at once. As a result of this, the system can now
decrypt and use files needed to boot the system, and open notifications without having to
wait until the user unlocks the phone.

https://source.android.com/security/selinux/concepts

Understanding Android Chapter 7

[191]

Trusted Execution Environment
Trusted Execution Environment (TEE) is an isolated area (typically a separate
microprocessor) intended to guarantee security of data stored inside it, and also to execute
code with integrity. The main processor on mobile devices is considered untrusted and
cannot be used to store secret data (such as cryptographic keys). Hence, TEE is used
specifically to perform such operations, and the software running on the main processor
delegates any operations that require use of secret data to the TEE processor.

The Android file hierarchy
In order to perform forensic analysis on any system (desktop or mobile), it's important to
understand the underlying file hierarchy. A basic understanding of how Android organizes
its data in files and folders helps a forensic analyst narrow down their research to specific
issues. Just like any other operating system, Android uses several partitions. This chapter
provides an insight into some of the most significant partitions and the content stored in
them.

It's worth mentioning again that Android uses the Linux kernel. Hence, if you are familiar
with Unix-like systems, you will understand the file hierarchy in Android very well. For
those who are not very well-acquainted with the Linux model, here is some basic
information: in Linux, the file hierarchy is a single tree with the top of the tree being
denoted as / (called the root). This is different from the concept of organizing files in drives
(as with Windows). Whether the file system is local or remote, it will be present under the
root. The Android file hierarchy is a customized version of this existing Linux hierarchy.
Based on the device manufacturer and the underlying Linux version, the structure of this
hierarchy may have a few insignificant changes. The following is a list of important folders
that are common to most Android devices. Some of the folders listed are only visible
through root access. Rooting is the process of gaining privileged access on an Android
device. More details about rooting and executing the adb commands (which are shown in
the following bullets) are covered in detail in Chapter 8, Android Forensic Setup and Pre-Data
Extraction Techniques:

/boot: As the name suggests, this partition has the information and files required
for the phone to boot. It contains the kernel and RAM disk, so without this
partition, the phone cannot start its processes. Data residing in RAM is rich in
value and should be captured during a forensic acquisition.

Understanding Android Chapter 7

[192]

/system: This partition contains system-related files other than the kernel and
RAM disk. This folder should never be deleted as that will make the device
unbootable. The contents of this partition can be viewed using the following
command:

* /recovery: This is designed for backup purposes and allows the device to boot
into recovery mode. In recovery mode, you can find tools to repair your phone
installation.
/data: This is the partition that contains the data of each application. Most of the
data belonging to the user, such as the contacts, SMS, and dialed numbers, is
stored in this folder. This folder has significant importance from a forensic point
of view as it holds valuable data. The contents of the data folder can be viewed
using the following command:

Understanding Android Chapter 7

[193]

* /cache: This is the folder used to store the frequently accessed data and some
of the logs for faster retrieval. The /cache partition is also important to a forensic
investigation as the data residing here may no longer be present in the /data
partition.
* /misc: As the name suggests, this folder contains information about
miscellaneous settings. These settings mostly define the state of the device, that
is, on/off. Information about hardware settings, USB settings, and so on, can be
accessed from this folder.
/sdcard: This is the partition that holds all the information present on the SD
card. It is valuable as it can contain information such as pictures, videos, files,
documents, and so on.

Understanding Android Chapter 7

[194]

The Android file system
Understanding the file system is one essential part of forensic methodologies. Knowledge
about properties and the structure of a file system proves to be useful during forensic
analysis. The file system refers to the way data is stored, organized, and retrieved from a
volume. A basic installation may be based on one volume split into several partitions; here,
each partition can be managed by a different file system. As is true in Linux, Android
utilizes mount points and not drives (that is, C: or E:). Each file system defines its own
rules for managing the files in the volume. Depending on these rules, each file system offers
a different speed for file retrieval, security, size, and so on. Linux uses several file systems,
and so does Android. From a forensic point of view, it's important to understand which file
systems are used by Android and to identify the file systems that are of significance to the
investigation. For example, the file system that stores the user's data is of primary concern
to us as opposed to a file system used to boot the device.

Viewing file systems on an Android device
The file systems supported by the Android kernel can be determined by checking the
contents of the filesystems file in the proc folder. The content of this file can be viewed
using the following command:

Understanding Android Chapter 7

[195]

In the preceding output, the first column tells us whether the file system is mounted on the
device. The ones with the nodev property are not mounted on the device. The second
column lists all the file systems present on the device. A simple mount command displays
different partitions available on the device, as follows:

The following is a brief overview of the important file systems:

The root file system (rootfs) is one of the main components of Android and
contains all the information required to boot the device. When the device starts
the boot process, it needs access to many core files, and thus, it mounts the root
file system. As shown in the preceding mount command-line output, this file
system is mounted at / (root folder). Hence, this is the file system on which all
the other file systems are slowly mounted. If this file system is corrupt, the device
cannot be booted.
The sysfs file system mounts the /sys folder, which contains information about
the configuration of the device. The following output shows various folders
under the sys directory in an Android device:

Understanding Android Chapter 7

[196]

Since the data present in these folders is mostly related to configuration, this is not usually
of much significance to a forensic investigator. But, there can be some circumstances where
we might want to check whether a particular setting was enabled on the phone, and
analyzing this folder could be useful under such conditions.

Note that each folder consists of a large number of files. Capturing this
data through forensic acquisition is the best method to ensure that this
data is not changed during examination.

The devpts file system presents an interface to the Terminal session on an
Android device. It is mounted at /dev/pts. Whenever a Terminal connection is
established, for instance, when an adb shell is connected to an Android device, a
new node is created under /dev/pts. The following is the output showing this
when the adb shell is connected to the device:

shell@Android:/ $ ls -l /dev/pts ls -l /dev/pts
crw------- shell shell 136, 0 2013-10-26 16:56 0

The cgroup file system stands for control groups. Android devices use this file
system to track their job. They are responsible for aggregating the tasks and
keeping track of them. This data is generally not very useful during forensic
analysis.
The proc file system contains information about kernel data structures,
processes, and other system-related information under the /proc directory. For
instance, the /sys directory contains files related to kernel parameters. Similarly,
/proc/filesystems displays the list of available file systems on the device. The
following command shows all the information about the CPU of the device:

Understanding Android Chapter 7

[197]

Similarly, there are many other useful files that provide valuable information
when you traverse them.

The tmpfs file system is a temporary storage facility on the device that stores the
files in RAM (volatile memory). The main advantage of using RAM is faster
access and retrieval. But, once the device is restarted or switched off, this data
will not be accessible anymore. Hence, it's important for a forensic investigator to
examine the data in RAM before a device reboot happens, or to extract the data
via RAM acquisition methods.

Common file systems found on Android
The Extended File System (EXT), which was introduced in 1992 specifically for the Linux
kernel, was one of the first file systems, and it used a virtual file system. EXT2, EXT3, and
EXT4 are the subsequent versions. Journaling is the main advantage of EXT3 over EXT2.
With EXT3, in case of an unexpected shutdown, there is no need to verify the file system.
The EXT4 file system, the fourth extended file system, has gained significance with mobile
devices implementing dual-core processors. The YAFFS2 file system is known to have a
bottleneck on dual-core systems. With the Gingerbread version of Android, the YAFFS file
system was swapped for EXT4.

Understanding Android Chapter 7

[198]

The following are the mount points that use EXT4 on the Samsung Galaxy mobile:

/dev/block/mmcblk0p9 /system ext4 ro,noatime,barrier=1,data=ordered 0 0
/dev/block/mmcblk0p3 /efs ext4
rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered 0 0
/dev/block/mmcblk0p8 /cache ext4
rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered 0 0
/dev/block/mmcblk0p12 /data ext4
rw,nosuid,nodev,noatime,barrier=1,journal_async_commit,data=ordered,n
oauto_da_alloc,discard 0 0

VFAT is an extension to the FAT16 and FAT32 file systems. Microsoft's FAT32 file system is
supported by most Android devices. It is supported by almost all the major operating
systems, including Windows, Linux, and macOS. This enables these systems to easily read,
modify, and delete the files present on the FAT32 portion of the Android device. Most of
the external SD cards are formatted using the FAT32 file system.

Observe the following output, which shows that the mount points /sdcard and
/secure/asec use the VFAT file system:

Yet Another Flash File System 2 (YAFFS2) is an open source, single-threaded file system
released in 2002. It is mainly designed to be fast when dealing with the NAND flash.
YAFFS2 utilizes out of band (OOB), and this is often not captured or decoded correctly
during forensic acquisition, which makes analysis difficult. We will discuss this further in
Chapter 9, Android Data Extraction Techniques. YAFFS2 was the most popular release at one
point and is still widely used in Android devices. YAFFS2 is a log-structured file system.
Data integrity is guaranteed, even in the case of a sudden power outage. In 2010, there was
an announcement stating that in releases after Gingerbread, devices were going to move
from YAFFS2 to EXT4. Currently, YAFFS2 is not supported by newer kernel versions, but
certain mobile manufacturers might still continue to support it.

Understanding Android Chapter 7

[199]

Flash Friendly File System (F2FS) was released in February 2013 to support Samsung
devices running the Linux 3.8 kernel. F2FS relies on log-structured methods that optimize
the NAND flash memory. The offline support features are a highlight of this file system,
though it is still transient and being updated.

Robust File System (RFS) supports NAND flash memory on Samsung devices. RFS can be
summarized as a FAT16 (or FAT32) file system where journaling is enabled through a
transaction log. Many users complain that Samsung should stick with EXT4. RFS has been
known to have lag times that slow down the features of Android.

Summary
Understanding the underlying features, file systems, and capabilities of an Android device
proves useful in a forensic investigation. Unlike iOS, several variants of Android exist as
many devices run the Android operating system and each may have different file systems
and unique features. The fact that Android is open and customizable also changes the
playing field of digital forensics. A forensic examiner must be prepared to expect the
unexpected when handling an Android device.

In the next chapter, we will discuss methods for accessing the data stored on Android
devices.

8
Android Forensic Setup and

Pre-Data Extraction Techniques
In the previous chapter, we covered the fundamentals of Android architecture, security
features, filesystems, and other capabilities. Having an established forensic environment
before the start of an examination is important, as it ensures that the data is protected while
the examiner maintains control of the workstation. This chapter will explain the process of,
and what to consider when, setting up a digital forensic examination environment. It is
paramount that the examiner maintains control of the forensic environment at all times; this
prevents the introduction of contaminants that could affect the forensic investigation.

We will cover the following topics in this chapter:

Setting up a forensic environment
Connecting the device and accessing it from a workstation
Screen lock bypass techniques
Gaining root access to the device

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[201]

Setting up the forensic environment for
Android
A forensic examiner may encounter a wide range of mobiles over the course of their
investigation. Hence, it is necessary to have a basic environment set up, on top of which he
can build based on the requirements. It is also very important that the forensic expert
maintains complete control over the environment at all times, to avoid any unexpected
situations. Setting up a proper lab environment is an essential part of the forensic process.
The Android forensic setup usually involves the following steps:

Start with a fresh or forensically sterile computer environment. This means that
other data is either not present on the system or is contained in a manner that
prevents it from contaminating the present investigation.
Install the basic software necessary to connect to the device. Android forensic
tools and methodologies will work on Windows, Linux, and OS X platforms.
Obtain access to the device. An examiner must be able to enable settings or
bypass them in order to allow the data to be extracted from the Android device.
Issue commands to the device through the methods defined in this chapter and in
Chapter 9, Android Data Extraction Techniques.

The following sections provide guidance on setting up a basic Android forensic
workstation.

The Android Software Development Kit
The Android Software Development Kit (SDK) helps the development world to build, test,
and debug applications to run on Android. This is achieved by providing the tools
necessary to create the applications. However, along with this, it also provides valuable
documentation and other tools that can be of great help during the investigation of an
Android device.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[202]

A good understanding of the Android SDK will help you to get to grips with the particulars
of a device and the data on the device.

The Android SDK consists of software libraries, APIs, tools, emulators,
and other reference material. It can be downloaded for free
from: https://developer.android.com/studio/index.html.

During a forensic investigation, the SDK helps connect to and access the data on the
Android device. The Android SDK is updated very frequently, so it's important to verify
that your workstation also remains up-to-date. The Android SDK can run on Windows,
Linux, and OS X.

The Android SDK installation
A working installation of the Android SDK is a must during the investigation of a forensic
device. Most websites recognize the operating system on the computer and will prompt you
to download the correct Android SDK. Unlike Android Studio, the SDK tools package only
includes the core SDK tools, which you can access from the command line.

The following is a step-by-step procedure to install the Android SDK on a Windows 7
machine:

Before you install the Android SDK, make sure that your system has Java 1.
Development Kit installed, because the Android SDK relies on Java SE
Development Kit (JDK).

JDK can be downloaded
from: http://www.oracle.com/technetwork/java/javase/downloads/ind
ex.html.

Download the latest version of the Android SDK2.
from: https://developer.android.com/studio/index.html. The installer
version of the SDK is recommended for this purpose.

https://developer.android.com/studio/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://developer.android.com/studio/index.html

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[203]

Run the installer file, which we downloaded in the previous step. You will see a3.
wizard window, as seen in the following screenshot. After this, run through the
routine Next steps that you encounter:

Android SDK Tools setup wizard

The installation location is the user's choice and must be remembered for future4.
access. In this example, we will install it in the C:\ folder. Click on the Install
button and choose the location (say, C:\android-sdk). The necessary files will
be extracted to this folder.
Open the directory (C:\android-sdk) and double-click on SDK Manager.exe to5.
begin the update process. Make sure that you select Android SDK Platform tools
and any one release platform version of Android, as shown in the following
screenshot. Some of the items in the list are chosen by default. For instance, it is
necessary to install the USB driver in order to work with Android devices in
Windows. In our example, Google USB Driver is selected. Similarly, you can find
other items under the Extras section. Accept the license and click on Install, as
shown in the following screenshot:

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[204]

Android SDK license

This completes the Android SDK installation. You can also update the system's
environment variables (path) by pointing to the executable files so that you can avoid
navigating to the SDK folder every time you need to execute a command. This can be done
by navigating to Control Panel | System | Advanced Settings | Environment Variables
and then adding an SDK path to it.

The installation of the Android SDK on OS X and Linux may vary. Make
sure that you follow all the steps provided with the SDK download for full
functionality.

An Android Virtual Device
Once the Android SDK is installed along with the release platform, you can create an
Android Virtual Device (or AVD, also called an emulator), which is often used by
developers when creating new applications. However, an emulator has significance from a
forensic perspective, too. Emulators are useful when trying to understand how applications
behave and execute on a device. This could be helpful in confirming certain findings that
are unearthed during a forensic investigation.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[205]

Also, while working on a device which is running on an older platform, you can design an
emulator with the same platform. Furthermore, before installing a forensic tool on a real
device, the emulator can be used to find out how a forensic tool works and changes content
on an Android device. To create a new AVD (on the Windows workstation), perform the
following steps:

Open the command prompt (cmd.exe). Start the AVD manager from the1.
command line by navigating to the path where the SDK is installed and call the
Android tool with the avd option, as shown in the following command line. This
will automatically open the AVD manager:

C:\android-sdk\tools>android avd

Alternatively, the AVD manager can also be started using the graphical
AVD manager. To start this, navigate to the location where the SDK is
installed (C:\android-sdk in our example) and double-click on AVD
Manager.

The Android Virtual Device Manager window is as shown in the following
screenshot:

Android Virtual Device Manager

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[206]

Click on New... in the AVD Manager window to create a new virtual device.2.
Click on Edit... to change the configuration of an existing virtual device, as shown
in the following screenshot:

Virtual device configuration

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[207]

Enter the following details:3.
AVD Name: This option is used to provide a name for the virtual
device, for example, ForensicsAVD.
Device: This option is used to select any device from the available
options based on the screen size.
Target: This option helps you select the platform of the device. Note
that only the versions that were selected and installed during the SDK
installation will be shown here to be selected.

Similarly, you can select hardware features to customize the emulator, for
example, the size of internal storage memory, SD card, and so on.

A confirmation message is shown once the device is successfully created. Now,4.
select the AVD and click on Start. This will prompt you with the launch options.
Select any option and click on Launch.
This should launch the emulator. Note that this could take a few minutes or even,5.
longer depending on the workstation's CPU and RAM. The emulator does
consume a significant amount of resources on the system. After a successful
launch, the AVD will run, as shown in the following screenshot:

The Android emulator

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[208]

From a forensic perspective, analysts and security researchers can leverage the functionality
of an emulator to understand the filesystem, data storage, and so on. The data created when
working on an emulator is stored in your home directory in a folder named android. For
instance, in our example, the details about the ForensicsAVD emulator that we created
earlier are stored under C:\Users\Rohit\.android\avd\ForensicsAVD.avd.

Among the various files present under this directory, the following are the files that are of
interest for a forensic analyst:

cache.img: This is the disk image of the /cache partition (remember that we
discussed the /cache partition of an Android device in Chapter 7, Understanding
Android).
sdcard.img: This is the disk image of the SD card partition.
Userdata-qemu.img: This is the disk image of the /data partition. The /data
partition contains valuable information about the device user.

Connecting an Android device to a workstation
Forensic acquisition of an Android device using open source tools requires connecting the
device to a forensic workstation. Forensic acquisition of any device should be conducted on
a forensically sterile workstation. This means that the workstation is strictly used for
forensics and not for personal use.

Note that, any time a device is plugged into a computer, changes can be
made to the device. The examiner must have full control of all interactions
with the Android device at all times.

The following steps should be performed by the examiner in order to connect the device
successfully to a workstation. Note that write protection may prevent the successful
acquisition of the device, since commands may need to be pushed to the device in order to
pull information. All the following steps should be validated on a test device prior to
attempting them on real evidence.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[209]

Identifying the device cable
The physical USB interface of an Android device allows it to connect to a computer to share
data, such as songs, videos, and photos. This USB interface might change from
manufacturer to manufacturer and also from device to device. For example, some devices
use mini-USB while some others use micro-USB and USB Type C. Apart from this, some
manufacturers use their own proprietary formats, such as EXT-USB, EXT micro-USB, and so
on. The first step in acquiring an Android device is to determine what kind of device cable
is required.

There are different types such as mini-USB, micro-USB, and other proprietary formats. The
following is a brief description of the most widely used connector types:

Connector type Description

Mini - A USB It is approximately 7 by 3 mm in size, with two of the corners on one
long side lifted out.

Micro - B USB It is approximately 6 by 1.5 mm in size, with two corners cut off to form
a trapezoid.

Co-axial
It has a circular hole with a pin sticking up in the middle. There are
different sizes under this varying from 2 to 5 mm in diameter. Widely
used with Nokia models.

D Sub-miniature
It has the shape of a rectangle with two rounded corners. The length of
the rectangle varies, but the height is always 1.5 to 2 mm. Used mostly
by Samsung and LG devices.

Installing the device drivers
In order to identify the device properly, the computer may need certain drivers to be
installed. Without necessary drivers, the computer may not identify and work with the
connected device. The issue is that, since Android is allowed to be modified and customized
by the manufacturers, there is no single generic driver that works for all Android devices.
Each manufacturer writes its own proprietary drivers and distributes them over the
internet. So, it's important to identify specific device drivers that need to be installed. Of
course, some of the Android forensic toolkits (which we will discuss in the following
chapters) do come with some generic drivers or a set of the most widely used drivers; they
may not work with all models of Android phone. Some Windows operating systems are
able to autodetect and install the drivers once the device is plugged in, but more often than
not, it fails. The device drivers for each manufacturer can be found on their respective
websites.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[210]

Accessing the connected device
If you haven't done so already, connect the unlocked Android device to the computer
directly using the USB cable. The Android device will appear as a new drive and you will
be able to access the files on the external storage. Some older Android devices may not be
accessible unless the Turn on USB storage option is enabled on the phone, as shown in the
following screenshot:

USB mass storage

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[211]

In some Android phones (especially with HTC), the device may expose more than one
functionality when connected with a USB cable. For instance, as shown in the following
screenshot, when an HTC device is connected, it presents a menu with four options. The
default selection is Charge only. When the Disk drive option is selected, it is mounted as a
disk drive:

HTC mobile USB options

When the device is mounted as a disk drive, you will be able to access the SD card present
on the device. From a forensic point of view, the SD card has significant value as it may
contain files that are important to an investigation. However, the core application data
stored under /data/data will remain on the device and cannot be accessed with these
methods.

The Android Debug Bridge
Considered to be one of the most crucial components in Android forensics, the Android
Debug Bridge (ADB) is a command-line tool that allows you to communicate with the
Android device and control it. We will learn about the ADB in detail in the coming
chapters; for now, we will focus on a basic introduction to ADB. You can access the ADB
tool under <sdk>/platform-tools/.

Before we discuss anything about the ADB, we need to have an understanding of the USB
debugging option.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[212]

USB debugging
The primary function of this option is to enable communication between the Android
device and a workstation on which the Android SDK is installed. On a Samsung phone, you
can access this under Settings | Developer Options, as shown in the following screenshot.

Other Android phones may have different environments and configuration features. The
examiner may have to force the Developer Options option by accessing build mode:

The USB debugging option in Samsung mobiles

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[213]

However, starting from Android 4.2, the Developer Options menu is hidden to make sure
that users do not enable it by accident. To enable it, go to Settings | About Phone and then
tap the Build Number field seven times. After this, Developer Options will be available in
the Settings menu. Prior to Android 4.2.2, enabling this option was the only requirement
for communicating with the device over ADB. However, starting from Android 4.2.2,
Google has introduced the Secure USB debugging option. This feature only allows hosts
that are explicitly authorized by the user to connect to the device using ADB. Thus, when
you connect the device to a new workstation via USB in order to access ADB, you need to
first unlock the device and authorize access by clicking on OK in the confirmation window,
as shown in the following screenshot. If Always allow from this computer is checked, the
device will not prompt for authorization in the future:

Secure USB debugging

When the USB debugging option is selected, the device will run the adb daemon (adbd) in
the background and will continuously look for a USB connection. The daemon will usually
run under a non-privileged shell user account and thus will not provide access to the
complete data. However, on rooted phones, adbd will run under the root account and thus
provide access to all the data. It is not recommended to root a device to gain full access
unless all other forensic methods fail. Should the examiner elect to root an Android device,
the methods must be well-documented and tested prior to attempting it on real evidence.
Rooting will be discussed at the end of this chapter.

On the workstation where the Android SDK is installed, adbd will run as a background
process. Also, on the same workstation, a client program, which can be invoked from a shell
by issuing the adb command, will run. When the adb client is started, it first checks if an
adb daemon is already running. If the response is negative, it initiates a new process to start
the adb daemon. The adb client program communicates with local adbd over port 5037.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[214]

Accessing the device using adb
Once the environment setup is complete and the Android device is in USB debugging
mode, connect the Android device the forensic workstation with a USB cable and start
using adb.

Detecting connected devices
The following adb command provides a list of all the devices connected to the forensic
workstation. This will also list the emulator if it is running at the time of issuing the
command. Also remember that, if the necessary drivers are not installed, then the following
command will show a blank message. If you encounter that situation, download the
necessary drivers from the manufacturer and install them:

Killing the local adb server
The following command kills the local adb service:

C:\android-sdk\platform-tools>adb.exe kill-server

After killing the local adb service, issue the adb devices command and observe that the
server is started, as shown in the following screenshot:

Accessing the adb shell
This command allows forensic examiners to access the shell on an Android device and
interact with the device.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[215]

The following is the command to access the adb shell and execute a basic ls command to
see the contents of the current directory:

C:\android-sdk\platform-tools>adb.exe shell shell@android:/ $ ls
ls acct cache
config d
data default.prop dev
efs etc
factory fstab.smdk4x12 init
init.bt.rc init.goldfish.rc init.rc init.smdk4x12.rc init.smdk4x12.usb.rc
....

The Android emulator can be used by forensic examiners to execute and understand the
adb commands before using them on the device. In Chapter 9, Android Data Extraction
Techniques, we will explain more about leveraging adb to install applications, copy files and
folders from the device, view device logs, and so on.

Basic Linux commands
We shall now take a quick look at some of the commonly used Linux commands and their
usage with respect to Android device:

ls: The ls command (with no option) lists files and directories present in the
current directory. With the -l option, this command shows files and directories
and also their size, modified date and time, the owner of file and its permission,
and so on, as shown in the following command line output:

shell@android:/ $ ls -l
ls -l
drwxr-xr-x root root 2015-01-17 10:13 acct
drwxrwx--- system cache 2014-05-31 14:55 cache
dr-x------ root root 2015-01-17 10:13 config
lrwxrwxrwx root root 2015-01-17 10:13 d ->
/sys/kernel/debug
drwxrwx--x system system 2015-01-17 10:13 data
-rw-r--r-- root root 116 1970-01-01 05:30 default.prop
drwxr-xr-x root root 2015-01-17 10:13 dev
drwxrwx--x radio system 2013-08-13 09:34 efs
lrwxrwxrwx root root 2015-01-17 10:13 etc ->
/system/etc
...

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[216]

Similarly, the following are a few options that can be used along with ls
command:

Option Description

a Lists hidden files

c Displays files by timestamp

d Displays only directories

n Displays the long format listing, with GID and UID numbers.

R Displays subdirectories as well

t Displays files based on time stamp

u Displays the file access time

Depending on the requirements, one or more of these options can be used by the
investigator to view the details.

cat: The cat command reads one or more files and prints them to standard
output, as shown in the following command lines:

shell@android:/ $ cat default.prop
cat default.prop
#
ADDITIONAL_DEFAULT_PROPERTIES
#
ro.secure=1
ro.allow.mock.location=0
ro.debuggable=0
persist.sys.usb.config=mtp

The operator > can be used to combine multiple files into one. The operator >> can
be used to append to an existing file.

cd: The cd command is used to change from one directory to another. This is
more frequently used while navigating from one folder to another. The following
example shows commands used to change to system folder:

shell@android:/ $ cd /system
cd /system
shell@android:/system $

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[217]

cp: The cp command can be used to copy a file from one location to another. The
syntax for this command is as follows:

$ cp [options] <source><destination>

chmod: The chmod command is used to change the access permissions to file
system objects (files and directories). It may also alter special mode flags. The
syntax for this command is as follows:

$ chmod [option] mode files

For example, chmod 777 on a file gives permission to everyone to read, write, and
execute.

dd: The dd command is used to copy a file, converting and formatting according
to the operands. With Android, the dd command can be used to create a bit-by-bit
image of the Android device. More details of imaging are covered in Chapter 4,
Data Acquisition from iOS Backups. The following is the syntax that needs to be
used with this command:

dd if=/test/file of=/sdcard/sample.image

rm: The rm command can be used to delete files or directories. The following is
the syntax for this command:

rm file_name

grep: The grep command is used to search files or output for a particular
pattern. The syntax for this command is as follows:

grep [options] pattern [files]

pwd: The pwd command displays current working directory. For example, the
following command line output shows that the current working directory is
/system:

shell@android:/system $ pwd
pwd
/system

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[218]

mkdir: The mkdir command is used to create a new directory. The following is
the syntax for this command:

mkdir [options] directories

exit: The exit command can be used to exit the shell you are in. Just type exit
in the shell to exit from it.

Handling an Android device
Handling an Android device in a proper manner prior to the forensic investigation is a very
important task. Care should be taken to make sure that our unintentional actions don't
result in data modification or any other unwanted happenings. The following sections
throw light on certain issues that need to be considered while handling the device in the
initial stages of forensic investigation.

With the improvements in technology, the concept of device locking has effectively
changed over the last few years. Most users now have a passcode locking mechanism
enabled on their device due to the increase in general security awareness. Before we look at
some of the techniques used to bypass locked Android devices, it is important not to miss
an opportunity to disable the passcode when there is a chance.

When an Android device, which is to be analyzed, is first accessed, check whether the
device is still active (unlocked). If so, change the settings of the device to enable greater
access to the device. So, when the device is still active, consider performing the following
tasks:

Enabling USB debugging: Once the USB debugging option is enabled, it gives
greater access to the device through the adb connection. This is of great
significance when it comes to extracting data from the device. The location to
enable USB debugging might change from device to device, but it's usually under
Developer Options in Settings. Most methods for physically acquiring Android
devices require USB debugging to be enabled.
Enabling the Stay awake setting: If the Stay awake option is selected and the
device is connected for charging, then the device never locks. Again, if the device
locks, the acquisition can be halted.
Increasing screen timeout: This is the time for which the device will be
effectively active once it is unlocked. The location to access this setting varies
depending upon the model of the device. On a Samsung Galaxy S3 phone, you
can access the same by navigating to Settings | Display | ScreenTimeout.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[219]

Apart from this, as mentioned in Chapter 1, Introduction to Mobile Forensics, the device
needs to be isolated from the network to make sure that remote wipe options do not work
on the device. The Android Device Manager allows the phone to be remotely wiped or
locked. This can be done by signing in to the Google account, which is configured on the
mobile. More details about this are mentioned in the following section. If the Android
device is not set up to allow remote wiping, the device can only be locked using the
Android Device Manager. Also, there are several Mobile Device Management (MDM)
software products available on the market, which allow users to remotely lock or wipe the
Android device. Some of these may not require specific settings to be enabled on the device.

Using the available remote wipe software, it is possible to delete all the data, including e-
mails, applications, photos, contacts, and other files including those found on the SD card.
To isolate the device from the network, you can put the device in airplane mode and disable
Wi-Fi as an extra precaution. Enabling airplane mode and disabling Wi-Fi works well, as
the device will not be able to communicate over a cellular network and cannot be accessed
via Wi-Fi. Removing the SIM card from the phone is also an option, but that does not
effectively stop the device from communicating over Wi-Fi or some other cellular networks.
To place the device in airplane mode, press and hold the Power Off button and select
Airplane mode.

All these steps can be done when the Android device is not locked. However, during the
investigation, we commonly encounter devices that are locked. Hence, it's important to
understand how to bypass the lock code if it is enabled on an Android device.

Screen lock bypassing techniques
Due to the increase in user awareness and the ease of functionality, there has been an
exponential increase in the usage of passcode options to lock Android devices. Hence,
bypassing the device's screen lock during a forensic investigation becomes increasingly
important. The applicability of the screen lock bypass techniques discussed so far is based
on the situation. Note that some of these methods may result in making changes to the
device. Make sure that you test and validate all the steps listed on non-evidentiary Android
devices. The examiner must have authorization to make the required changes to the device,
document all steps taken, and be able to describe the steps taken if a courtroom testimony is
required.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[220]

Currently, there are three types of screen lock mechanisms offered by Android. Although
there are some devices which have voice lock, face lock, and fingerprint lock options, we
will limit our discussion to the following three options, since these are the most widely used
on all Android devices:

Pattern lock: The user sets a pattern or design on the phone and the same pattern
must be drawn to unlock the device. Android was the first smartphone to
introduce a pattern lock.
PIN code: This is the most common lock option and is found on many mobile
phones. The PIN code is a 4-digit number that needs to be entered to unlock the
device.
Passcode: This is an alphanumeric passcode. Unlike the PIN, which takes four
digits, the alphanumeric passcode includes letters, as well as digits.

The following section details some of the techniques to bypass these Android lock
mechanisms. Depending on the situation, these techniques might help an investigator to
bypass the screen lock.

Using adb to bypass the screen lock
If USB debugging appears to be enabled on the Android device, it is wise to take advantage
of it by connecting with adb using a USB connection, as discussed in the earlier sections of
this chapter. The examiner should connect the device to the forensic workstation and issue
the adb devices command. If the device shows up, it implies that USB debugging is
enabled. If the Android device is locked, the examiner must attempt to bypass the screen
lock. The following are the two methods that may allow the examiner to bypass the screen
lock when USB debugging is enabled.

Deleting the gesture.key file
Deleting the gesture.key file will remove the pattern lock on the device. However, it's
important to note that this will permanently change the device, as the pattern lock is gone.
This should be considered if conducting cover operations. This is how the process is done:

Connect the device to the forensic workstation (a Windows machine in our1.
example) using a USB cable.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[221]

Open the command prompt and execute the following instructions:2.

adb.exe shell
cd /data/system rm gesture.key

Reboot the device. If the pattern lock still appears, just draw any random design3.
and the device should unlock without any trouble.

This method works when the device is rooted. This method may not be
successful on unrooted devices. Rooting an Android device should not be
performed without proper authorization, as the device is altered.

Updating the settings.db file
To update the settings.db file, perform the following steps:

Connect the device to the forensic workstation using a USB cable.1.
Open the command prompt and execute the following instructions:2.

Exit and reboot the device.3.
The Android device should be unlocked. If not, attempt to remove gesture.key4.
as explained earlier.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[222]

Checking for the modified recovery mode and
adb connection
In Android, recovery refers to the dedicated partition where the recovery console is present.
The two main functions of recovery are to delete all user data and install updates. For
instance, when you factory reset your phone, recovery boots up and deletes all the data.
Similarly, when updates are to be installed on the phone, it is done in recovery mode. There
are many enthusiastic Android users who install custom ROM through a modified recovery
module. This modified recovery module is mainly used to make the process of installing
custom ROM easy. Recovery mode can be accessed in different ways, depending on the
manufacturer of the device; information on which method is right for which manufacturer's
devices is easily available on the internet. Usually, this is done by holding different keys
together such as the Volume button and Power button. Once in recovery mode, connect the
device to the workstation and try to access the adb connection. If the device has a recovery
mode which is not modified, the examiner may not be able to access the adb connection.
The modified recovery versions of the device present the user with different options and
can easily be noticed, as shown in the following screenshot:

Flashing a new recovery partition
There are mechanisms available to flash the recovery partition of an Android device with a
modified image. The fastboot utility would facilitate this process. The fastboot is a
diagnostic protocol that comes with the SDK package, used primarily to modify the flash
file system through a USB connection from a host computer. For this, you need to start the
device in boot loader mode, in which only the most basic hardware initialization is
performed.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[223]

Once the protocol is enabled on the device, it will accept a specific set of commands that are
sent to it via the USB cable using a command line. Flashing or rewriting a partition with a
binary image stored on the computer is one such command that is allowed. Once the
recovery is flashed, boot the device in recovery mode, mount the /data and /system
partitions, and use adb to remove the gesture.key file. Reboot the phone and you should
be able to bypass the screen lock. However, this works only if the device bootloader is
unlocked. Also, flashing permanently alters the device. Instead of flashing, you could use
the fastboot boot command to boot to a recovery image temporarily to delete the key file
without permanently changing the recovery partition.

Using automated tools
There are several automated solutions available in the market for unlocking Android
devices. Commercial tools, such as Cellebrite and XRY, are capable of bypassing the screen
locks, but most of them require USB debugging to be enabled. We will now examine how to
unlock an Android device using the UFED user lock code recovery tool. Also, this tool only
works on those devices that support USB OTG. This process also requires a UFED camera,
Cable No. 500-Bypass lock, and Cable No. 501-Bypass lock. Once the tool is installed on the
workstation, follow these steps to unlock an Android device:

Run the tool on the work station and press 1, as shown in the following1.
screenshot:

UFED user lock code recovery tool

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[224]

Now, connect side A of Cable No. 500-Bypasslock to a USB port of the2.
workstation. Also, connect side B of Cable No. 500-Bypasslock to Cable No. 501-
OTG and then connect the other end to the device.
Once connected, the tool prompts you to select the recovery profile. Select [1]3.
Manually select the recovery profile..

Now, select the lock type used on the device and the recovery profile, and4.
proceed by following the instructions on the screen.
After this, make sure that the keypad appears on the device screen and that it's5.
ready to accept the PIN code.
Close any message windows that may appear. Press 1 and hit Enter. Now, make6.
five incorrect login attempts by entering random input, and click on Forgot
pattern at the bottom of the device.
Follow the instructions on the screen, wait for the camera window to open, and7.
then click on the camera window.
Use the cursor to select any non-empty area on the device's screen by placing the8.
green square over it. For example, select any number on the screen. This is used
by the tool to detect if the device is unlocked. Press Enter to start the process.
The tool will try a number of combinations to unlock the device. Once unlocked,9.
it would prompt you to end the process.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[225]

Using Android Device Manager
Most of the latest Android phones come with a service called Android Device Manager,
which helps the owner of a device to locate their lost phone. This service can also be used to
unlock a device; however, this is possible only when you know the Google account
credentials that are configured on the device. If you have access to the account credentials,
then follow these steps to unlock the device:

Visit http://google.com/android/devicemanager on your workstation.1.
Sign in using the Google account that is configured on the device.2.
Select the device you need to unlock and click on Lock, as shown in the following3.
screenshot:

Android Device Manager

Enter a temporary password and click on Lock again.4.
Once it's successful, enter the temporary password on the device to unlock it.5.

It can be done without knowing the credentials of the computer where the login is saved
(that is, the suspect's PC). Similarly, if you are dealing with a Samsung device, you can also
try Samsung's FindMyMobile service, which enables you to set a temporary password to
unlock the device.

http://google.com/android/devicemanager

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[226]

Smudge attack
In rare cases, a smudge attack may be used to deduce the password of a touchscreen mobile
device. This attack relies on identifying the smudges left behind by the user's fingers. While
this may present a bypass method, it must be said that a smudge attack is unlikely since
most Android devices are touchscreen and smudges will also be present from using the
device. However, it has been demonstrated that, under proper lighting, the smudges that
are left behind can easily be detected, as shown in the following screenshot. By analyzing
the smudge marks, we can discern the pattern that is used to unlock the screen. This attack
is more likely to work while discerning the pattern lock on the Android device. In some
cases, PIN codes can also be recovered depending upon the cleanliness of the screen. So,
during a forensic investigation, care should be taken when the device is first handled to
make sure that the screen is not touched.

Smudges visible on a device under proper lighting (source: https://www.usenix.org/legacy/events/woot10/t ech/full_papers/Aviv.pdf)

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[227]

Using the Forgot Password/Forgot Pattern option
If you know the username and password of the primary Gmail address that is configured
on the device, you can change the PIN, password, or swipe on the device. After making a
certain number of failed attempts to unlock the screen, Android provides an option named
Forgot Pattern or Forgot Password, as shown in the following screenshot:

Forgot Pattern option on an Android device

Tap on that link and sign in using the Gmail username and password. This will allow you
to create a new pattern lock or passcode for the device.

Note that this works only on devices running Android 4.4 or earlier.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[228]

Bypassing third-party lock screens by booting
into safe mode
If the screen lock is a third-party app, rather than the inbuilt lock, it can be bypassed by
booting into safe mode and disabling it. To boot into safe mode on Android device 4.1 or
later, long-press the power button until the power options menu appears. Then, long-press
the Power Off option and you'll be asked if you want to reboot your Android device into
safe mode. Tap the OK button, as shown in the following screenshot:

Safe mode in Android

Once you're in safe mode, you can disable the third-party lock screen app or uninstall it
completely. After this, reboot the device and you should be able to access it without any
lock screen.

Securing the USB debugging bypass using adb
keys
As mentioned earlier, while using USB debugging, if the Always allow from this computer
option is checked, the device will not prompt for authorization in future. This is done by
storing certain keys, namely adbkey and adbkey.pub, on the computer. Any attempt to
connect to adb from an untrusted computer is denied. In this case, the adbkey and the
adbkey.pub files can be pulled from the suspect's computer and copied to the
investigator's workstation. The device will then assume that it is communicating with a
known, authorized computer. The adbkey and adbkey.pub files can be found at
C:Users<username>.android on Windows machines.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[229]

Securing the USB debugging bypass in Android
4.4.2
As explained in the earlier sections, the secure USB debugging feature introduced in
Android 4.4.2 allows only authorized workstations to connect to the device. However,
there's a bug in this feature as reported at https://labs.mwrinfosecurity.com/ which
allows bypassing the Secure USB debugging feature and connecting the device to any
workstation. Here are the steps to follow to bypass Secure USB debugging on an Android
device:

On an unlocked device, attempt to use adb and observe that an error message is1.
shown by the device.
Now, navigate to either the emergency dialer or the lock-screen camera and2.
execute the following commands:

$ adb kill-server
$ adb shell

Observe that the confirmation dialog is now triggered and the workstation can be3.
authorized without unlocking the device. The confirmation dialog box is
displayed on the emergency dialer, as shown in the followings screenshot:

Bypassing Secure USB debugging in Android 4.2.2

https://labs.mwrinfosecurity.com/

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[230]

Once connected to the device through adb, try to bypass the lock screen using the4.
following command:

$ adb shell pm clear com.android.keyguard

Crashing the lock screen UI in Android 5.x
On devices running Android 5.0 to 5.1.1, the password lock screen (not the pin or pattern
locks) can be bypassed by crashing the screen UI. This can be accomplished by following
these steps, as explained at: https://android.gadgethacks.com/:

Click on the Emergency Call option on the lock screen and then enter any1.
random input (for example, 10 asterisks) on the dialer screen.
Double-tap the field to highlight the entered text, as shown in the following2.
screenshot, and choose Copy. Now, paste it into the same field:

Crashing lock screen UI

https://android.gadgethacks.com/

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[231]

Repeat this process of copying and pasting to add more characters until double-3.
tapping the field no longer highlights the characters.
Go back to the lock screen and open the camera shortcut. Now, pull down the4.
notifications screen and tap the Settings icon. You will then be prompted to enter
a password.
Long-press the input field and choose Paste and repeat this process several more5.
times. After pasting enough characters into the field, the lock screen will crash
and allow you to access the device.

Other techniques
All of the previously mentioned techniques and the commercial tools available prove to be
useful to the forensic examiner trying to get access to the data on an Android device.
However, there could be situations where none of these techniques work. To obtain a
complete physical image of the device, techniques such as chip-off and JTAG may be
required when commercial and open source solutions fail. A short description of these
techniques is included here.

While the chip-off technique removes the memory chip from a circuit and tries to read it,
the JTAG technique involves probing the JTAG Test Access Ports (TAPs) and soldering
connectors to the JTAG ports in order to read data from the device memory. The chip-off
technique is more destructive because, once the chip is removed from a device, it is difficult
to restore the device to its original functional state. Also, expertise is needed to carefully
remove the chip from the device by desoldering the chip from the circuit board. The heat
required to remove the chip can also damage or destroy the data stored on that chip. Hence,
this technique should be looked upon only when the data is not retrievable by open source
or commercial tools or the device is damaged beyond repair. When using the JTAG
technique, JTAG ports help an examiner to access the memory chip to retrieve a physical
image of the data without needing to remove the chip. To turn off the screen lock on a
device, an examiner can identify where the lock code is stored in the physical memory
dump, turn off the locking, and copy that data back to the device. Commercial tools, such as
Cellebrite Physical Analyzer, can accept the .bin files from chip-off and JTAG acquisitions
and crack the lock code for the examiner. Once the code is either manually removed or
cracked, the examiner can analyze the device using normal techniques.

Both the chip-off and JTAG techniques require extensive research and
experience to be attempted on a real device. A great resource for JTAG and
chip-off on devices can be found
at: http://forensicswiki.org/wiki/Main_Page.

http://forensicswiki.org/wiki/Main_Page

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[232]

Gaining root access
As a mobile device forensic examiner, it is essential to know everything that relates to
twisting and tweaking the device. This would help you to understand the internal workings
of the device in detail and comprehend many issues that you may face during your
investigation. Rooting Android phones has become a common phenomenon and you can
expect to encounter rooted phones during forensic examinations. The examiner, where
applicable, may also need to root the device in order to acquire data for the forensic
examination. Hence, it's important to know the ins and outs of rooted devices and how they
are different from other phones. The following sections cover information about Android
rooting and other related concepts.

What is rooting?
The default administrative account in Unix-like operating systems is called root. So, in
Linux, the root user has the power to start/stop any system service, edit/delete any file,
change the privileges of other users, and so on. We have already learned that Android uses
the Linux kernel, and hence, most of the concepts present in Linux are applicable to
Android as well. However, most of the Android phones do not let you log in as a root user
by default.

Rooting an Android phone is all about gaining access on the device to
perform actions that are not normally allowed on the device.
Manufacturers want the devices to function in a certain manner for normal
users. Rooting a device may void a warranty, since root opens the system
to vulnerabilities and provides the user with superuser capabilities.

Imagine a malicious application having access to an entire Android system with root access.
Remember that, in Android, each application is treated as a separate user and issues a UID.
Thus, the applications have access to limited resources and the concept of application
isolation is enforced. Essentially, rooting an Android device allows superuser capabilities
and provides open access to the Android device.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[233]

Rooting an Android device
Even though the hardware manufacturers try to put enough restrictions to restrict access to
the root, hackers have always found different ways to get access to the root. The process of
rooting varies depending on the underlying device manufacturer. However, rooting any
device usually involves exploiting a security bug in the device's firmware and then copying
the su (superuser) binary to a location in the current process's path (/system/xbin/su)
and granting it executable permissions with the chmod command.

For the sake of simplicity, imagine that an Android device has three to four partitions,
which run programs not entirely related to Android (Android being one among them).

The boot loader is present in the first partition and is the first program that runs when the
phone is powered on. The primary job of this boot loader is to boot other partitions and
load the Android partition, commonly referred to as ROM by default. To see the boot loader
menu, a specific key combination is required such as holding the power button and
pressing the volume up button. This menu provides options for you to boot into other
partitions, such as the recovery partition.

The recovery partition deals with installing upgrades to the phone, which are written
directly to the Android ROM partition. This is the mode that you see when you install any
official update on the device. Device manufacturers make sure that only official updates are
installed through the recovery partition. Thus, bypassing this restriction would allow you to
install/flash any unlocked Android ROM. Modified recovery programs are those that not
only allow an easier rooting process, but also provide various options that are not seen in
the normal recovery mode. The following screenshot shows the normal recovery mode:

Normal Android system recovery mode

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[234]

The following screenshot shows the modified recovery mode:

The modified recovery mode

The most commonly used recovery program in the Android world is the Clockwork
recovery, also called ClockworkMod. Hence, most of the rooting methods begin by flashing
a modified recovery to the recovery partition. After that, you can issue an update, which
can root the device. However, you don't need to perform all the actions manually, as
software is available for most of the models, which can root your phone with a single click.

Starting from Android 7.x, Google has started strictly enforcing verified boot on devices.
Verified boot guarantees that the software on the device is not modified before booting into
the normal mode. This is implemented in such a way that each stage verifies the integrity
and authenticity of the next stage before executing it. If a particular partition or segment is
modified, the integrity check fails and the mobile may not boot into normal mode. More
information about verified boot can be found
at https://source.android.com/security/verifiedboot/verified-boot.

This also means that rooting such Android devices is going to be extremely difficult,
because rooting involves tweaking the Android OS. Marshmallow is the first Android
version to provide alerts on the system integrity, but with Android 7.x, it is made
mandatory.

Rooting a device has both advantages and disadvantages associated with it. The following
are the advantages of rooting:

Rooting allows modification of the software on the device to the deepest level.
For example, you can overclock or underclock the device's CPU.
It allows restrictions imposed on the device by carriers, manufacturers, and so on,
to be bypassed.
For extreme customization, new customized ROMs can be downloaded and
installed.

https://source.android.com/security/verifiedboot/verified-boot

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[235]

The following are the disadvantages of rooting:

Rooting a device must be done with extreme care as errors may result in
irreparable damage to the software on the phone, turning the device into a
useless brick.
Rooting might void the warranty of a device.
Rooting results in increased exposure to malware and other attacks. Malware
with access to the entire Android system can create havoc.

Once the device is rooted, applications such as the Superuser app are available to provide
and deny root privileges. This app helps you to grant and manage superuser rights on the
device, as shown in the following screenshot:

Application requesting root access

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[236]

Root access - adb shell
A normal Android phone does not allow you to access certain directories and files on the
device. For example, try to access the /data/data folder on an Android device that is not
rooted. You will see the following message:

On a rooted phone, you can run the adb shell as a root by issuing the following command:

C:\android-sdk\platform-tools>adb.exe root

Thus, rooting a phone enables you to access folders and data that are otherwise not
accessible. Also, note that # symbolizes root or superuser access, while $ reflects a normal
user, as shown in the preceding command lines.

Android Forensic Setup and Pre-Data Extraction Techniques Chapter 8

[237]

Summary
A proper forensic workstation setup is required prior to conducting investigations on an
Android device. Using open source methods to acquire and analyze Android devices
requires the installation of specific software on the forensic workstation. If the method of
forensic acquisition requires the Android device to be unlocked, the examiner needs to
determine the best method by which to gain access to the device. The various screen lock
bypass techniques explained in this chapter help an examiner to bypass the passcode under
different circumstances. Depending on the forensic acquisition method and scope of the
investigation, rooting the device should provide complete access to the files present on the
device.

Now that the basic concepts of gaining access to an Android device have been covered, we
will cover acquisition techniques and describe how data is pulled using each method in
Chapter 9, Android Data Extraction Techniques.

9
Android Data Extraction

Techniques
Using any of the screen lock bypass techniques explained in Chapter 8, Android Forensic
Setup and Pre-Data Extraction Techniques, an examiner can try to access a locked device. Once
the device is accessible, the next task is to extract the information present on the device. This
can be achieved by applying various data extraction techniques to the Android device. This
chapter will help you to identify the sensitive locations present on an Android device and
explain various logical and physical techniques that can be applied to the device in order to
extract the necessary information.

In this chapter, we will cover the following topics:

Logical data extraction using ADB pull, ADB backup, ADB dumpsys, and content
providers
Physical extraction, which covers imaging an Android device and SD card, JTAG,
and chip-off techniques

Android Data Extraction Techniques Chapter 9

[239]

Data extraction techniques
Data residing on an Android device may be an integral part of civil, criminal, or internal
investigations done as part of a corporate company's internal probe. While dealing with
investigations involving Android devices, the forensic examiner needs to be mindful of the
issues that need to be taken care of during the forensic process; this includes determining
whether root access is permitted (via consent or legal authority) and what data can be
extracted and analyzed during the investigation. For example, in a criminal case involving
stalking, the court may only allow for SMS, call logs, and photos to be extracted and
analyzed on the Android device belonging to the suspect. In this case, it may make the most
sense to logically capture only those specific items. However, it is best to obtain full
physical data extraction of the device and only examine the areas admissible by the court.
You never know where your investigation may lead and it is best to obtain as much data
from the device as possible immediately, rather than wishing you had a full image should
the scope of consent change. The data extraction techniques on an Android device can be
classified into three types:

Manual data extraction
Logical data extraction
Physical data extraction

As described in Chapter 1, Introduction to Mobile Forensics, manual extraction involves
browsing through the device normally and capturing any valuable information, while
logical extraction deals with accessing the file system and physical extraction is about
extracting a bit-by-bit image of the device. The extraction methods for each of these types
will be described in detail in the following sections.

Some methods may require the device to be rooted in order to fully access
the data. Each method has different implications and their success rates
will depend on the tool and method used as well as the device's make and
model.

Android Data Extraction Techniques Chapter 9

[240]

Manual data extraction
This method of extraction involves the examiner utilizing the normal user interface of the
mobile device to access content present in the memory. The examiner will browse through
the device normally by accessing different menus to view the details such as call logs, text
messages, and IM chats. The content of each screen is captured by taking pictures and can
be presented as evidence. The main drawback with this type of examination is that only the
files that are accessible via the operating system (in UI mode) can be investigated. Care
must be taken when manually examining the device, as it's easy to press the wrong button
and erase or add data. Manual extraction should be used as the last resort to verify findings
extracted using one of the other methods. Certain circumstances may warrant the examiner
to conduct manual examination as the first step. This may include cases of life or death
situations or missing persons where a quick scan of the device may lead the police to the
individual.

Logical data extraction
Logical data extraction techniques extract the data present on the device by interacting with
the operating system and by accessing the file system. These techniques are significant,
because they provide valuable data, work on most devices, and are easy to use. Once again,
the concept of rooting comes into the picture while extracting the data. Logical techniques
do not actually require root access for data extraction. However, having root access on a
device allows you to access all the files present on a device. This means that some data may
be extracted on a non-rooted device while root access will open the device and provide
access to all the files present on the device. Hence, having root access to a device would
greatly influence the amount and kind of data that could be extracted through logical
techniques. The following sections explain various techniques that can be used to extract
data logically from an Android device.

ADB pull data extraction
As seen earlier, adb is a command-line tool that helps you communicate with the device to
retrieve information. Using adb, you can extract data from all the files on the device or just
the relevant files in which you are interested.

Android Data Extraction Techniques Chapter 9

[241]

To access an Android device through adb, it's necessary that the USB debugging option is
enabled. From Android 4.2.2, due to secure USB debugging, the host connecting to the
device should also be authorized. If the device is locked and USB debugging is not enabled,
try to bypass the screen lock using the techniques explained in Chapter 8, Android Forensic
Setup and Pre-Data Extraction Techniques.

As a forensic examiner, it's important to know how the data is stored on the Android device
and to understand where important and sensitive information is stored so that the data can
be extracted accordingly. Application data often contains a wealth of user data that may be
relevant to the investigation. All files pertaining to applications of interest should be
examined for relevance, as will be explained in Chapter 10, Android Data Analysis and
Recovery. The application data can be stored in one of the following locations:

Shared preferences: This stores data in key-value pairs in a lightweight XML
format. Shared preference files are stored in the shared_pref folder of the
application /data directory.
Internal storage: This stores data that is private and is present in the device's
internal memory. Files saved to the internal storage are private and cannot be
accessed by other applications.
External storage: This stores data that is public in the device's external memory,
which does not usually enforce security mechanisms. This data is available in the
/sdcard directory.
SQLite database: This data is available in the /data/data/PackageName/
database. It is usually stored with the .db file extension. The data present in a
SQLite file can be viewed using a SQLite browser
(https://sourceforge.net/projects/sqlitebrowser/) or by executing the
necessary SQLite commands on the respective files.

Every Android application stores data on the device using one or more of the preceding
data storage options. So, the Contacts application would store all the information about the
contact details in the /data/data folder under its package name. Note that /data/data is
a part of your device's internal storage, where all the apps are installed under normal
circumstances. Some application data will reside on the SD card and in the /data/data
partition. Using adb, we can pull the data present in this partition for further analysis using
the adb pull command. Once again, it's important to note that this directory is only
accessible on a rooted phone.

https://sourceforge.net/projects/sqlitebrowser/

Android Data Extraction Techniques Chapter 9

[242]

On a rooted phone, the adb pull command on the databases folder of the Dropbox app
can be executed as follows:

Similarly, on a rooted phone, the entire /data folder can be pulled in this manner. As
shown in the following screenshot, the complete /data directory on the Android device can
be copied to the local directory on the machine. The entire data directory was extracted in
97 seconds. The extraction time will vary depending on the amount of data residing in
/data:

The /data directory extracted to a forensic workstation

Android Data Extraction Techniques Chapter 9

[243]

On a non-rooted device, a pull command on the /data directory does not extract the files,
as shown in the following output, since the shell user does not have permission to access
those files:

The data copied from a rooted phone through the preceding process maintains its directory
structure, thus allowing an investigator to browse through the necessary files to gain access
to the information. By analyzing the data of the respective applications, a forensic expert
can gather critical information that can influence the outcome of the investigation. Note that
examining the folders natively on your forensic workstation will alter the dates and times of
the content. The examiner should make a copy of the original output to use for a date/time
comparison.

Using SQLite Browser to view the data
SQLite Browser is a tool that can help during the course of analyzing the extracted data.
SQLite Browser allows you to explore the database files with the following extensions--
qlite, .sqlite3, .sqlitedb, .db, and .db3. The main advantage of using SQLite Browser
is that it shows the data in a table form. Navigate to File | Open Database to open a .db file
using SQLite Browser. As shown in the following screenshot, there are three tabs--Database
Structure, Browse Data, and Execute SQL. The Browse Data tab allows you to see the
information present in different tables within the .db files.

We will be mostly using this tab during our analysis. Alternately, Oxygen Forensic SQLite
Database Viewer can also be used for the same purpose. Recovering deleted data from
database files is possible and will be explained in Chapter 10, Android Data Analysis and
Recovery:

SQLite Browser

Android Data Extraction Techniques Chapter 9

[244]

The following sections throw light on identifying important data and manually extracting
various details from an Android phone.

Extracting device information
Knowing the details of your Android device, such as the model, version, and more, will aid
your investigation. For example, when the device is physically damaged and this prohibits
the examination of the device information, you can grab details about the device by viewing
the build.prop file present in the /system folder, as follows:

Android Data Extraction Techniques Chapter 9

[245]

Extracting call logs
Accessing the call logs of a phone is often required during the investigation to confirm
certain events. The information about call logs is stored in the contacts2.db file located at
/data/data/com.android.providers.contacts/databases/. As mentioned earlier,
you can use SQLite Browser to see the data present in this file after extracting it to a local
folder on the forensic workstation. As shown in the following screenshot, using the adb
pull command, the necessary .db files can be extracted to a folder on the forensic
workstation:

The contacts2.db file copied to a local folder

Note that applications used to make calls can store call log details in the respective
application folder. All communication applications must be examined for call log details, as
follows:

C:\android-sdk-windows\platform-tools>adb.exe pull
/data/data/com.android.providers.contacts C:temp

Android Data Extraction Techniques Chapter 9

[246]

Now, open the contacts2.db file using SQLite Browser (by navigating to File | Open
Database) and browse through the data present in different tables. The calls table present in
the contacts2.db file provides information about the call history. The following
screenshot highlights the call history along with the name, number, duration, and date:

Extracting SMS/MMS
During the course of an investigation, a forensic examiner may be asked to retrieve the text
messages that are sent by and delivered to a particular mobile device. Hence, it is important
to understand where the details are stored and how to access the data. The mmssms.db file
which is present under the
/data/data/com.android.providers.telephony/databases location contains the
necessary details. As with call logs, the examiner must ensure that applications capable of
messaging are examined for relevant message logs, as follows:

Android Data Extraction Techniques Chapter 9

[247]

The phone number can be seen under the address column and the corresponding text
message can be seen under the body column, as shown in the following screenshot:

The calls table in the contacts2.db file

Extracting browser history
Extracting browser history information is one task that is often required to be reconstructed
by a forensic examiner. Apart from the default Android Browser, there are different
browser applications that can be used on an Android phone, such as Firefox Mobile, Google
Chrome, and so on. All of these browsers store their browser history in the SQLite .db
format. For our example, we are extracting data from the default Android browser to our
forensic workstation. This data is located at /data/data/com.android.browser. The file
named browser2.db contains the browser history details. The following screenshot shows
the browser data, as represented by Oxygen Forensic SQLite Viewer. Note that the trial
version will hide certain information:

The browser2.db file in Oxygen Forensic SQLite Viewer

Android Data Extraction Techniques Chapter 9

[248]

Analysis of social networking/IM chats
Social networking and IM chat applications such as Facebook, Twitter, and WhatsApp
reveal sensitive data, which could be helpful during the investigation of any case. The
analysis is pretty much the same as with any other Android applications. Download the
data to a forensic workstation and analyze the .db files to find out if you can unearth any
sensitive information. For example, let's look at the Facebook application and try to see
what data can be extracted. First, we extract the /data/data/com.facebook.katana
folder and navigate to the databases folder. The fb.db file present under this folder
contains the information that is associated to the user's account. The friends_data table
contains information about the friends' names along with their phone numbers, email IDs,
and dates of birth, as shown in the following screenshot. Similarly, other files can be
analyzed to find out if any sensitive information can be gathered:

The fb.db file in SQLite browser

Similarly, by analyzing the data present in the /data/data folder, information about geo-
location, calendar events, user notes, and more can be grabbed.

Android Data Extraction Techniques Chapter 9

[249]

ADB backup extraction
Starting from Android 4.0, Google implemented the adb backup functionality, which
allows users to back up application data to a computer using the adb tool. This process does
not require root access and, hence, can be very useful during forensic examination. The
main drawback is that it does not back up every application installed on the device. The
backup feature is application dependent, as the owner of the application can choose to
allow backups. Backups are allowed by default, but the developer can disable it if he wants
to. Hence, most third-party apps have this enabled and thus, the adb backup command
will work for them. Here is the syntax for the adb backup command:

adb backup [-f <file>] [-apk|-noapk] [-shared|-noshared] [-all] [-
system|nosystem] [<packages...>]

-f: This is used to choose where the backup file will be stored. If not specified, it
defaults to backup.ab in the present working directory.
[-apk|noapk]: This is used to choose whether or not to back up the .apk file.
The default is -noapk.
[-obb|-noobb]: This is used to choose whether or not to back up the .obb (APK
expansion) files. It defaults to -noobb.
[-shared|-noshared]: This is used to choose whether or not to back up data
from shared storage and the SD card. The default is -noshared.
[-all]: This includes all applications for which backups are enabled.
[-system|-nosystem]: This is used to choose whether or not to include system
applications. It defaults to -system.
[<packages>]: This is used to list a specific package name to be backed up.

Once the device is connected to the workstation and adb is able to access it, run the adb
backup command, as shown in the following screenshot:

The adb backup command

Android Data Extraction Techniques Chapter 9

[250]

Once the command is run, the user then needs to approve the permission on the device, as
shown in the following screenshot. For this reason, if the device is screen locked, it's not
possible to take a backup:

Backup permission on the device

An Android backup file is stored as an .ab file and, by default, it is stored in the platform-
tools folder of the Android SDK. There are free tools, such as Android Backup Extractor,
that can convert the .ab file into a .tar file, which can then be viewed. Android Backup
Extractor can be downloaded from: https://sourceforge.net/projects/adbextractor/.
This tool is a Java-based application, so ensure that Java is installed on the workstation
before using the tool. To convert the backup file to .tar format, issue the following
command:

java -jar abe.jar unpack backup.ab backup.tar

https://sourceforge.net/projects/adbextractor/

Android Data Extraction Techniques Chapter 9

[251]

This will automatically create a file with the .tar extension, which can then be viewed easily
using Archive tools such as WinRAR or 7Zip. However, note that if the password was
entered on the device when the backup was created, the file would be encrypted and,
therefore, the examiner needs to provide the password as an argument in the preceding
command. The backup file contains two main folders—apps and shared. The apps folder
contains all the information that is present under /data/data for the applications included
in the backup. The shared folder contains all of the data present on the SD card.

ADB dumpsys extraction
The adb dumpsys command allows you to gather information about services and
applications running on the system. The adb shell dumpsys command gives diagnostic
output for all system services. The dumpsys command does not require root privileges to be
executed and requires only USB debugging to be enabled as with any other adb command.
As shown in the following screenshot, to see the list of all services that you can use with
dumpsys, run the / command:

The dumpsys service list command

Analyzing certain dumpsys services, such as Wi-Fi, user, notification and so on, can be
helpful in certain scenarios. Here are some of the interesting cases where running the
dumpsys command could be helpful during forensic analysis:

Android Data Extraction Techniques Chapter 9

[252]

The dumpsys iphonesubinfo service can be used to get information about device ID or
the IMEI number, as shown in the following screenshot:

The dumpsys command showing the IMEI number

The dumpsys wifi service gives information about Wi-Fi points accessed by the user. It
shows the SSIDs of the connections which have been saved. This information can be used to
pin down the user to a particular location. Here is the adb dumpsys command, which gives
this information:

The dumpsys command showing last connected Wi-Fi details

Android Data Extraction Techniques Chapter 9

[253]

The dumpsys usagestats service gives information about recently used applications,
along with their date of usage. For example, the following screenshot shows that no apps
were used on 02-01-2016, but on 01-31-2016, the Google Chrome browser was used and
there was also an attempt to back up the phone data:

The dumpsys command showing recently used apps

Depending on the case being investigated, the forensic analyst needs to figure out if any of
the dumpsys commands can be of use. Running a dumpsys command immediately after a
device seizure can be extremely helpful later on. By running the adb shell dumpsys
command, you can record all the dumpsys service information.

Using content providers
In Android, the data of one application cannot be accessed by another application under
normal circumstances. However, Android provides a mechanism through which data can
be shared with other applications. This is precisely achieved through the use of content
providers. Content providers present data to external applications in the form of one or
more tables. These tables are no different from the tables found in a relational database.
They can be used by the applications to share data, usually through the URI addressing
scheme. They are used by other applications that access the provider using a provider-client
object. During the installation of an app, the user determines whether or not the app can
gain access to the requested data (content providers). For instance, contacts, SMS/MMS,
calendar, and so on, are examples of content providers.

Android Data Extraction Techniques Chapter 9

[254]

Hence, by taking advantage of this, we can create an app that can grab all the information
from all the available content providers. This is precisely how most commercial forensic
tools work. The advantage of this method is that it can be used on both rooted and non-
rooted devices. For our example, we use AFLogical, which takes advantage of the content
provider mechanism to gain access to the information. This tool extracts the data and saves
it to an SD card in CSV format. The following steps extract the information from an
Android device using AFLogical Open Source Edition 1.5.2:

Download AFLogical OSE 1.5.21.
from: https://github.com/nowsecure/android-forensics/downloads.

The AFLogical LE edition is capable of extracting a large amount of
information and requires registration via forensics using an active law
enforcement or government agency email. AFLogical OSE can pull all
available MMSs, SMSs, contacts, and call logs.

Ensure that USB debugging mode is enabled and connect the device to the2.
workstation.
Verify that the device is identified by issuing the following command:3.

Save the AFLogical OSE app in the home directory and issue the following4.
command to install it on the device:

https://github.com/nowsecure/android-forensics/downloads

Android Data Extraction Techniques Chapter 9

[255]

Once the application is installed, you can run it directly from the device and click5.
on the Capture button present at the bottom of the app, as shown in the following
screenshot:

The AFLogical OSE app

The app starts extracting data from the respective content providers and, once the6.
process is complete, a message will be displayed, as shown in the following
screenshot:

Message displayed after the extraction is complete

Android Data Extraction Techniques Chapter 9

[256]

The extracted data is saved to the SD card of the device in a directory named7.
forensics. The extracted information is stored in CSV files, as shown in the
following screenshot. The CSV files can be viewed using any editor:

Files extracted using AFLogical OSE

The info.xml file present in the same directory provides information about the8.
device including the IMEI number, IMSI number, Android version, information
about installed applications, and so on.

However, note that third-party apps' installation should be allowed (by
selecting the Unknown Sources option) on the device for this to work.
Other tools that can help during investigation to logically extract data will
be covered in Chapter 11, Android App Analysis, Malware, and Reverse
Engineering.

Android Data Extraction Techniques Chapter 9

[257]

Physical data extraction
Physical extraction refers to the process of obtaining an exact bit-by-bit image of the device.
It is important to understand that a bit-by-bit image is not the same as copying and pasting
the contents of the device. If we copy and paste the contents of a device, it will only copy
the available files, such as visible files, hidden files, and system-related files. This method is
considered as a logical image. With this method, deleted files and files that are not
accessible are not copied by the copy command. Deleted files can be recovered (based on
the circumstances) using certain techniques, which we will see in the following chapters.
Unlike logical extraction, physical extraction is an exact copy of the device's memory and
includes more information, such as the slack space, unallocated space, and so on.

Android data extraction through physical techniques is commonly performed using the dd
command, while other advanced techniques such as JTAG and chip-off are also available,
but are usually hard to implement and require great precision and experience to try them
on real devices during the course of an investigation. JTAG and chip-off techniques are
covered in detail in the following sections. However, extracting data through the dd
command requires root access. The following sections provide an overview of various
techniques which can be used to perform physical extraction.

Imaging an Android phone
Imaging a device is one of the most important steps in mobile device forensics. When
possible, it's imperative to obtain a physical image of the Android device before performing
any techniques to extract the data directly from the device. In forensics, this process of
obtaining a physical acquisition is commonly called imaging the device. The terms physical
image, forensic image, or raw image are often used to refer to the image captured through
this process. Let's first revisit how imaging is done on a desktop computer as it helps us to
correlate and realize the problems associated with imaging Android devices. Let's assume
that a desktop computer, which is not powered on, is seized from a suspect and sent for
forensic examination. In this case, a typical forensic examiner would remove the hard disk,
connect it to a write blocker and obtain a bit-by-bit forensic image using any of the available
tools. The original hard disk is then safely protected during the forensic imaging of the data.

With an Android device, all the areas that contain data cannot be easily removed. Also, if
the device is active at the time of receiving it for examination, it is not possible to analyze
the device without making any changes to it, because any interaction would change the
state of the device.

Android Data Extraction Techniques Chapter 9

[258]

An Android device may have two file storage areas: internal and external storage. Internal
storage refers to the built-in non-volatile memory. External storage refers to the removable
storage medium, such as a micro SD card. However, it's important to note that some devices
do not have a removable storage medium such as an SD card, but they divide the available
permanent storage space into internal and external storage. Hence, it's not always true that
external storage is something that is removable. When a removable SD card is present, a
forensic image of the memory card has to be obtained. As discussed in Chapter 7,
Understanding Android, these removable cards are generally formatted with the FAT 32 file
system. Some mobile device acquisition methods will acquire the SD card through the
Android device. This process, while useful, will be slow due to the speed limitations of the
USB phone cables.

Android, by default, does not provide access to the internal directories and system-related
files. This restricted access is to ensure the security of the device. For instance, the
/data/data folder is not accessible on a non-rooted device. This folder is especially of
interest to us, because it stores most of the user-created data and many applications write
valuable data into this folder. Hence, to obtain an image of the device, we need to root the
Android device. Rooting a device gives us superuser privileges and access to all the data. It
is important to realize that this book has been stressing that all the steps taken should be
forensically sound and should not make changes to the device whenever possible. Rooting
an Android device will make changes to it and should be tested on any device that the
examiner has not previously investigated. Rooting is common for Android devices, but
getting root access could alter the device in a manner that renders the data changed or
worse yet-wiped. Some Android devices, such as the Nexus 4 and 5, may force the data
partition to be wiped prior to allowing root access. This negates the need to root the device
in order to gain access because all the user data is lost during the process. Just remember
that, while rooting provides access to more data when successfully done, it can also wipe
the data or destroy the phone. Hence, you must ensure that you have consent or legal rights
to manipulate the Android device prior to proceeding with the root. As rooting techniques
have been discussed in Chapter 8, Android Forensic Setup and Pre-Data Extraction Techniques,
we will proceed with the example assuming that the device is rooted.

The following is a step-by-step process to obtain a forensic image of a rooted Android
device:

Connect the Android device to the workstation and verify that the device is1.
identified by issuing the adb devices command, as shown here:

Android Data Extraction Techniques Chapter 9

[259]

Once the adb access is ready, the partitions can be acquired from the Android2.
device using the following steps:

Using the dd command: The dd command can be used to create a raw
image of the device. This command helps us create a bit-by-bit image
of the Android device by copying low-level data.
Inserting a new SD card: Insert a new SD card into the device in order
to copy the image file to this card. Make sure that this SD card is wiped
and does not contain any other data.
Executing the command: The file system of an Android device is
stored in different locations within the /dev partition. A simple mount
command on a Samsung Galaxy S3 phone returns the following
output:

From the preceding output, we can identify the blocks where the /system,3.
/data, and /cache partitions are mounted. Although it's important to image all
the files, most of the data is present in the /data and /system partitions. When
time allows, all partitions should be acquired for completeness. Once this is done,
execute the following command to image the device:

dd if=/dev/block/mmcblk0p12 of=/sdcard/tmp.image

In the preceding example, the data partition of a Samsung Galaxy S III was used (where if
is the input file and of is the output file).

The preceding command will make a bit-by-bit image of the mmcblk0p12 file (data
partition) and copy the image file to an SD card. Once this is done, the dd image file can be
analyzed using the available forensic software.

Android Data Extraction Techniques Chapter 9

[260]

The examiner must ensure that the SD card has enough storage space to
contain the data partition image. Other methods are available to acquire
data from the rooted devices.

If the image cannot be written to the SD card directly, the examiner can use netcat
command to write the output directly to the machine. The netcat tool is a Linux-based tool
used for transferring data over a network connection. Android devices do not usually come
with netcat installed. To check, simply open the ADB shell and type nc . If it returns
saying nc is not found, netcat will have to be installed manually on the device. You can
download the netcat compiled for Android
at: https://sourceforge.net/projects/androidforensics-netcat/files/. Push netcat
on to the device using the following command on the examiner's computer:

adb push nc /dev/Case_Folder/nc

The command should have created the Case_Folder in /dev and nc should be in it. Now,
we need to give it permission to execute from the ADB shell. This can be done as follows:

chomd +x /dev/Case_Folder/nc

Open two terminal windows with the ADB shell open in one of them. The other will be
used to listen to the data being sent from the device. Now, we need to enable port
forwarding over ADB from the examiner's computer:

adb forward tcp:9999 tcp:9999

9999 is the port we chose to use for netcat; it can be any arbitrary port number between
1023 and 65535 on a Linux or Mac system (1023 and below are reserved for system
processes and require root permission to use). In the other terminal window, run the
following:

nc 127.0.0.1 9999 > data_partition.img

The data_partition.img file should now be created in the current directory of the
examiner's computer. When the data is finished transferring, netcat in both terminals will
terminate and return to the command prompt. The process can take a significant amount of
time depending on the size of the image.

https://sourceforge.net/projects/androidforensics-netcat/files/

Android Data Extraction Techniques Chapter 9

[261]

Imaging a memory (SD) card
There are many tools available that can image a memory card. The following example uses
WinHex to create a raw disk image of the SD card. The following is a step-by-step process
with which to image a memory card using WinHex:

Connecting the memory card: Remove the SD card from the memory slot and
use a card reader to connect the memory card to the forensic workstation.
Write protect the card: Open the disk using WinHex. Navigate to Options | Edit
Mode and select Read-only mode=(write-protected mode), as shown in the
following screenshot. This is to make sure that the device is write protected and
no data can be written on it:

WinHex view of Edit Mode (left) and WinHex Read-only Mode enabled (right)

Calculating the hash value: Calculate the hash value of the memory card to make
sure that no changes are made at any point during the investigation. Navigate to
Tools | Compute hash and choose any hashing algorithm.

Android Data Extraction Techniques Chapter 9

[262]

Creating the image of the disk: Navigate to File | Create Disk Image, as shown
in the following screenshot. Select the raw image option (.dd) to create an image.
This completes the imaging of the memory card:

The WinHex disk image option

Once a forensic image is obtained using any of the methods described previously, it needs
to be analyzed to extract the relevant information. There are several commercial tools, such
as Cellebrite, XRY, and so on, that can analyze the image files. Analyzing Android images is
covered in detail in Chapter 10, Android Data Analysis and Recovery.

Joint Test Action Group
Joint Test Action Group (JTAG) involves using advanced data acquisition methods, which
involve connecting to specific ports on the device and instructing the processor to transfer
the data stored on the device. Using this method, a full physical image of a device can be
acquired. It is always recommended to first try out the other techniques mentioned earlier,
as they are easy to implement and require less effort. Examiners must have proper training
and experience prior to attempting JTAG, as the device may be damaged if handled
improperly.

The JTAG process usually involves the following forensic steps:

In JTAG, the device Test Access Ports (TAPs) are used to access the CPU of the
device. Identifying the TAPs is the primary and most important step. TAPs are
identified and the connection is traced to the CPU to find out which pad is
responsible for each function. Although device manufacturers document
resources about the JTAG schematics of a particular device, they are not released
for general viewing. A good site for JTAG on an Android device
is: http://www.forensicswiki.org/wiki/JTAG_Forensics.

http://www.forensicswiki.org/wiki/JTAG_Forensics

Android Data Extraction Techniques Chapter 9

[263]

Wire leads are then soldered to appropriate connector pins and the other end is
connected to the device that can control the CPU, as shown in the following
image (published by http://www.binaryintel.com/). JTAG jigs can be used to
forgo soldering for certain devices. The use of a jig or JTAG adapter negates the
need to solder, as it connects the TAPs to the CPU:

The JTAG setup

Once the preceding steps are complete, power must be applied to boot the CPU.
The voltage that must be applied depends on the specifications released by the
hardware manufacturer. Do not apply a voltage beyond the number given in the
specification.
After applying the power, a full binary memory dump of the NAND flash can be
extracted.
Analyze the extracted data using the forensic techniques and tools learned in this
book. A raw .bin file will be obtained during the acquisition; most forensic tools
support ingestion and analysis of this image format.

http://www.binaryintel.com/

Android Data Extraction Techniques Chapter 9

[264]

JTAG may sound complicated (perhaps it is), but it serves many useful purposes and three
advantages are listed here:

The main advantage with this technique is that it works even if the device is not
powered on
It does not require root, ADB, or USB debugging
It can be used to recover device PINs/passwords and so can image the entire flash
memory and recover/crack password files

It is also important to understand that the JTAG technique should not result in the loss of
functionality of the device. If reassembled properly, the device should function without any
problems. Although the JTAG technique is effective in extracting the data, only experienced
and qualified personnel should attempt it. Any error in soldering the JTAG pads or
applying the wrong voltage could severely damage the device.

Chip-off
Chip-off, as the name suggests, is a technique where the NAND flash chips are removed
from the device and examined to extract the information. Hence, this technique will work
even when the device is passcode-protected and USB debugging is not enabled. Unlike the
JTAG technique, where the device functions normally after examination, the chip-off
technique usually results in destruction of the device, that is, it is more difficult to reattach
the NAND flash to the device after examination. The process of reattaching the NAND flash
to the device is called re-balling and requires training and practice.

Chip-off techniques usually involve the following forensic steps:

All of the chips on the device must be researched to determine which chip
contains user data.
Once determined, the NAND flash is physically removed from the device. This
can be done by applying heat to desolder the chip (published by
http://www.binaryintel.com/).
This is a very delicate process and must be done with great care, as it may result
in damaging the NAND flash.
The chip is then cleaned and repaired to make sure that the connectors are
present and functioning.

http://www.binaryintel.com/

Android Data Extraction Techniques Chapter 9

[265]

Using specialized hardware device adapters, the chip can now be read. This is
done by inserting the chip into the hardware device, which supports the specific
NAND flash chip. In this process, raw data is acquired from the chip, resulting in
a .bin file.
The data acquired can now be analyzed using forensic techniques and the tools
described earlier.

The chip-off technique is most helpful when the device is damaged severely, locked, or
otherwise inaccessible. However, the application of this technique requires not only
expertise, but also costly equipment and tools. There is always a risk of damaging the
NAND flash while removing it and, hence, it is recommended to try out the logical
techniques first to extract any data.

While root access is a must to perform any of the techniques discussed earlier, it must be
noted here that at the time of writing this book, none of these techniques would work on
devices which have Full Disk Encryption (FDE) enabled. As discussed in Chapter 7,
Understanding Android, Google has mandated the use of FDE for most devices starting from
Android 6.0. Although some techniques were demonstrated and published for decrypting
full disk encryption, they are device-specific and are not widely applicable.

Summary
Extracting data from an Android device is one of the crucial steps during the course of an
investigation. Once the device is accessible, an examiner can extract the data using manual,
logical, or physical data extraction techniques. Logical techniques extract the data by
interacting with the device using tools such as ADB. Physical techniques, on the other hand,
access a larger set of data; they are complex and require a great deal of expertise to perform.
Imaging a device produces a bit-by-bit image of the device, which is later analyzed using
tools. Imaging a device is one of the primary steps to ensure that the data on the device is
not modified.

In the next chapter, we will see how to extract relevant data such as call logs, text messages,
browsing history, and so on from an image file. We will also cover data recovery
techniques, using which we can recover the data deleted from a device.

10
Android Data Analysis and

Recovery
In the previous chapter, we covered various logical and physical extraction techniques. In
physical extraction, a bit-by-bit image of the Android device is obtained, which contains
valuable information. In this chapter, we will learn how to analyze and extract relevant
data, such as call logs, text messages, and so on, from an image file. While the data
extraction and analysis techniques provide information about various details, not all
techniques can provide information about the deleted data. Data recovery is a crucial aspect
of mobile forensics, as it helps to unearth the deleted items. This chapter aims at covering
various techniques, which can be used by a forensic analyst to recover the data from an
Android device.

In this chapter, we will cover the following two major topics:

Analyzing and extracting data from Android image files using the open source
tool, Autopsy
Various techniques to recover deleted files from the SD card and internal
memory

Android Data Analysis and Recovery Chapter 10

[267]

Analyzing an Android image
The term Android image refers to the physical image (also called forensic image or raw
image) that is obtained by performing any of the physical data extraction techniques. Using
the techniques explained in Chapter 9, Android Data Extraction Techniques, you can image
the entire /data/data block, or any particular block that is of relevance to the
investigation. Once the image is obtained, an investigator can manually go through the
contents of the file or take advantage of the available tools to parse through the contents.
Commercial tools, such as Cellebrite, XRY, and so on, can drill into the data and present a
comprehensive picture of the contents. Autopsy is one of the very widely used open source
tools in the forensics world that performs an excellent job of analyzing an Android image.

Autopsy
Autopsy is a forensic platform and acts as a GUI for the Sleuth Kit. It is available for free;
you can download it at: http://www.sleuthkit.org/. The Sleuth Kit is a collection of UNIX
and Windows-based tools and utilities, which are used to perform forensic analysis.
Autopsy displays the results by forensically analyzing a given volume, and thereby helps
investigators focus on relevant sections of the data. Autopsy is free, extensible, and has
several modules that can be plugged in. Autopsy can be used to load and analyze an
Android image that is obtained after physical extraction.

Adding an image to Autopsy
Once you have downloaded and installed Autopsy, follow these steps to add an image to
Autopsy:

Open the Autopsy tool and select the Create New Case option, as shown in1.
following screenshot:

http://www.sleuthkit.org/

Android Data Analysis and Recovery Chapter 10

[268]

Creating new case in Autopsy

Enter all the necessary case details, including the name of the case, the location2.
where data needs to be stored, and so on, as shown in the following screenshot:

Entering case information in Autopsy

Android Data Analysis and Recovery Chapter 10

[269]

Enter the case number and examiner details, and click on Finish.3.
Now, click on the Add Data Source button, add the image file to be analyzed,4.
and click on Next:

Entering Data Source information in Autopsy

Android Data Analysis and Recovery Chapter 10

[270]

On the next screen, you can configure what modules have to be run on the5.
images, as shown in the following screenshot. It is recommended to select the
Recent Activity, Exif Parser, Keyword Search, and Android Analyzer modules.
In the next step, click on Finish:

Configuring modules in Autopsy

Once this is done, the tool usually takes a few minutes to parse through the image
depending on its size. During this time, you might see some errors or warning messages if
any are encountered by the tool. However, Autopsy provides the fastest access to the
artifacts and the file system when compared to other tools.

Android Data Analysis and Recovery Chapter 10

[271]

Analyzing an image using Autopsy
Once the image is loaded, expand the file present under Data Sources to see data present in
the image. For example, the following screenshot shows the contents of the /data/data
folder:

Analyzing an image in Autopsy

Android Data Analysis and Recovery Chapter 10

[272]

In the preceding example, only the /data portion of the device has been imaged. If the
entire device is imaged, then the tool would show more volumes. Depending on the
underlying details of the investigation, relevant portions need to be analyzed. In the
following example, by examining the folders present under com.android.browser, we
can extract the list of various sites visited by the user along with their dates:

Analyzing browsing details in Autopsy

Valuable data, such as text messages, browsing history, chats, call history, pictures, videos,
location details, and so on, could be unearthed by analyzing the data present under various
sections.

Android data recovery
Data recovery is one of the most significant and powerful aspects of forensic analysis. The
ability to recover deleted data can be crucial to crack many civil and criminal cases. From a
normal user's point of view, recovering data that has been deleted would usually refer to
the operating system's built-in solutions, such as the Recycle Bin in Windows. While it's true
that data can be recovered from these locations, due to an increase in user awareness, these
options don't often work. For instance, on a desktop computer, people now use Shift + Delete
as a way to delete a file completely from their desktop.

Android Data Analysis and Recovery Chapter 10

[273]

Data recovery is the process of retrieving deleted data from a device when it cannot be
accessed normally. Consider the scenario where a mobile phone has been seized from a
terrorist. Wouldn't it be of the greatest importance to know which items were deleted by the
terrorist? Access to any deleted SMS messages, pictures, dialed numbers, application data,
and more can be of critical importance, as they often reveal sensitive information. With
Android, it is possible to recover most of the deleted data if the device files are properly
acquired. However, if proper care is not taken while handling the device, the deleted data
could be lost forever. To ensure that the deleted data is not overwritten, it is recommended
to keep the following points in mind:

Do not use the phone for any activity after seizing it. The deleted data exists on
the device until the space is needed by some other incoming data. Hence, the
phone must not be used for any sort of activity to prevent the data from being
overwritten.
Even when the phone is not used, without any intervention from our end, data
can be overwritten. For instance, an incoming SMS would automatically occupy
space, which could overwrite the data marked for deletion. To prevent
occurrence of such events, the examiner should follow the forensic handling
methods described in the previous chapters. The easiest solution is to place the
device in airplane mode or disable all connectivity options on the device. This
prevents the delivery of any new messages.

All Android file systems have metadata that contains information about the hierarchy of
files, filenames, and so on. Deletion will not really erase this data but remove the file system
metadata. When text messages or any other files are deleted from the device, they are just
made invisible to the user, but the files are still present on the device. Essentially, the files
are simply marked for deletion, but they reside on the file system until being overwritten.
Recovering deleted data from an Android device involves two scenarios: recovering data
that is deleted from the SD card, such as pictures, videos, application data, and more, and
recovering data that is deleted from the internal memory of the device. The following
sections cover the techniques that can be used to recover deleted data from both the SD card
and the internal memory of the Android device.

Recovering deleted data from an external SD card
Data present on SD cards can reveal a lot of information to forensic investigators. SD cards
are capable of storing pictures and videos taken by the phone's camera, voice recordings,
application data, cached files, and more. Essentially, anything that can be stored on a
computer hard drive can be stored on an SD card as much as the available space allows.

Android Data Analysis and Recovery Chapter 10

[274]

Recovering the deleted data from an external SD card is a straightforward process. SD cards
can be mounted as an external mass storage device and forensically acquired using
standard digital forensic methods, as discussed in Chapter 9, Android Data Extraction
Techniques. As mentioned in the previous chapters, SD cards in Android devices often use
the FAT32 file system. The main reason for this is that the FAT32 file system is widely
supported in most operating systems, including Windows, Linux, and macOS X. The
maximum file size on a FAT32 formatted drive is around 4 GB. With increasingly high-
resolution formats now available, this limit is commonly reached. Apart from this, FAT32
can be used on partitions that are less than 32 GB in size. Hence, the exFAT file system,
which overcomes these problems, is now being used in some of the devices.

Recovering the deleted data from an external SD card can be easily accomplished if it can be
mounted as a drive. Hence, if the SD card is removable, connect it to a workstation using a
write blocker for acquisition. However, the latest Android devices do not usually mount as
a mass storage. This is because these devices use MTP or PTP protocols instead of USB mass
storage. The problem with USB mass storage is that the computer would need exclusive
access to the storage. In other words, the external storage needs to be completely
disconnected from the Android OS when it is connected to a workstation. This has led to
several other complications with respect to mobile apps. When an Android device uses
MTP, it appears to the computer as a media device and not as Removable Storage, as
shown in the following screenshot:

Android Data Analysis and Recovery Chapter 10

[275]

But, the normal data recovery tools would need a mount drive in order to perform a scan.
Hence, most of the latest devices which use MTP/PTP are not treated as a mount drive, and
so the traditional data recovery tools which work for computers do not work on them.

For this reason, when the device uses MTP/PTP and is not mounted as a drive, the recovery
can be done by certain Android-specific data recovery tools which need USB debugging
option to be turned on. Almost all the Android data recovery tools in the market need you
to enable USB debugging so that your device and the SD card can be recognized before
starting Android data recovery.

Examiners must understand that Android devices might use space on the SD card to cache
application data; therefore, it is important to make sure that as much data as possible is
obtained from the device prior to removing the SD card. Some older devices automatically
mount the device as a drive when connected through USB. It is a sound forensic practice to
not work directly on the device for the purpose of data extraction, data recovery, and so on.
Hence, a physical image of the SD card needs to be taken and all required analysis is
performed on the image itself. It is recommended to acquire the SD card through the device
as well as separately to ensure that all data is obtained. To achieve the SD card image, dd
through adb can be used while the device is running to obtain an image of the SD card of
the device if the device cannot be powered off due to possible evidence running in the
memory. If the SD card is removed and connected to the workstation through a card reader,
it appears as external mass storage which can then be imaged using the standard forensic
techniques described in earlier chapters.

Once the image is obtained, it can be analyzed using any standard forensic tools, such as
FTK Imager. FTK Imager is a simple tool that can be used to create and analyze disk images.

It is available for download
at: https://accessdata.com/product-download/ftk-imager-version-3.2.0.

https://accessdata.com/product-download/ftk-imager-version-3.2.0

Android Data Analysis and Recovery Chapter 10

[276]

The following is a step-by-step process to recover the deleted files from an SD card image
using FTK Imager:

Start FTK Imager and click on File, then click on Add Evidence Item... in the1.
menu:

Adding evidence in FTK Imager

Select Image File as the evidence type in the Select Source dialog, and click on2.
Next:

Selecting File Type in FTK Imager

Android Data Analysis and Recovery Chapter 10

[277]

In the Select File dialog, go to the location where the SDCARD.dd SD card image3.
file is present, select it, and click on Finish:

Selecting the image file for analysis in FTK Imager

The contents of the SD card image are then shown in the View pane. You can4.
browse through the folders by clicking on the + sign. When a folder is
highlighted, the contents are shown on the right pane. When a file is selected, its
contents can be seen in the bottom pane. As shown in the following screenshot,
the deleted files are also shown with a red X over the icon:

Android Data Analysis and Recovery Chapter 10

[278]

Deleted files shown with a red cross over the icons in FTK Imager

To copy the deleted files to the workstation, right-click on the marked file and5.
select Export Files..., as shown in the following screenshot:

Recovering deleted images in FTK Imager

Android Data Analysis and Recovery Chapter 10

[279]

It is also recommended to check whether the device has any backup applications or files
installed. The initial release of Android did not include a mechanism for users to back up
their personal data. Hence, several backup applications were used extensively by users.
Using these apps, users have the ability to back up their data either to the SD card or to the
cloud. For example, the Super Backup app contains the options to back up call logs,
contacts, SMS, and more, as shown in the following screenshot:

The Super Backup Android app

Upon detection of a backup application, the forensic examiners must attempt to determine
where the data is stored. Usually, the backup folder path is the internal SD card. The folder
path is also present in the backup app's settings. The data saved in a backup may contain
important information, and thus, looking for any third-party backup app on the device
would be very helpful.

Android Data Analysis and Recovery Chapter 10

[280]

Recovering data deleted from internal memory
Recovering files that are deleted from Android's internal memory (such as SMS, contacts,
app data, and more) is not supported by all analytical tools and may require manual
carving. Unlike some media containing common file systems, such as SD cards, the file
system may not be recognized and mounted by forensic tools. Also, the examiner cannot get
access to the raw partitions of the internal memory of an Android phone unless the phone is
rooted. The following are some of the other issues that the examiner may face when
attempting to recover data from the internal memory on Android devices:

To get access to the internal memory, you can try to root the phone. However, the
rooting process might involve writing some data to the /data partition, and this
process could overwrite the data of value on the device.
Unlike SD cards, the internal file system here is not FAT32 (which is widely
supported by forensic tools). The internal file system could be YAFFS2 (in older
devices), EXT3, EXT4, RFS, or something proprietary built to run on Android.
Therefore, many of the recovery tools designed for use with Windows file
systems won't work.
Application data on Android devices is commonly stored in the SQLite format.
While most forensic tools provide access to the database files, they may have to
be exported and viewed in a native browser. The examiner must examine the raw
data to ensure that the deleted data is not overlooked by the forensic tool.

The discussed reasons make it difficult, but not impossible, to recover the deleted data from
the internal memory. The internal memory of Android devices holds a bulk of the user data
and the possible keys to your investigation. As previously mentioned, the device must be
rooted in order to access the raw partitions. Most of the Android recovery tools on the
market do not highlight the fact that they only work on rooted phones. Let's now take a
look at how we can recover deleted data from an Android phone.

Recovering deleted files by parsing SQLite files
Android uses SQLite files to store most data. Data related to text messages, emails, and
certain app data is stored in SQLite files. SQLite databases can store deleted data within the
database itself. Files marked for deletion by the user no longer appear in the active SQLite
database files. Therefore, it is possible to recover the deleted data, such as text messages,
contacts, and more. There are two areas within a SQLite page that can contain deleted data--
unallocated blocks and free blocks.

Android Data Analysis and Recovery Chapter 10

[281]

Most of the commercial tools that recover deleted data scan the unallocated blocks and free
blocks of the SQLite pages. Parsing the deleted data can be done using the available forensic
tools, such as Oxygen Forensics SQLite Viewer. The trial version of the SQLite Viewer can
be used for this purpose; however, there are certain limitations on the amount of data that
you can recover. You can write your own script to parse the files for deleted content, and
for this, you need to have a good understanding of the SQLite file format. The link
http://www.sqlite.org/fileformat.html is a good place to start. If you do not want to
reinvent and want to reuse the existing scripts, you can try the available open source
Python scripts
(http://az4n6.blogspot.in/2013/11/python-parser-to-recover-deleted-sqlite.html)
to parse the SQLite files for deleted records.

For our example, we will recover deleted SMSs from an Android device. Recovering deleted
SMSs from an Android phone is quite often requested as part of forensic analysis on a
device, mainly because text messages contain data, which can reveal a lot of information.
There are different ways to recover deleted text messages on an Android device. First, we
need to understand where the messages are being stored on the device. In Chapter 9,
Android Data Extraction Techniques, we explained the important locations on the Android
device where user data is stored. Here is a quick recap of this:

Every application stores its data under the /data/data folder (again, this
requires root access to acquire data)
The files under the location,
/data/data/com.android.providers.telephony/databases, contain
details about the SMS/MMS

Under the mentioned locations, text messages are stored in an SQLite database file, which is
named mmssms.db. Deleted text messages can be recovered by examining this file. Here are
the steps to recover deleted SMSs using the mmssms.db file:

On the Android device, enable the USB debugging mode and connect the device1.
to the forensic workstation. Using the adb command-line tool, extract the
databases folder present at /data/data/ by issuing the adb pull command:

http://www.sqlite.org/fileformat.html
http://az4n6.blogspot.in/2013/11/python-parser-to-recover-deleted-sqlite.html

Android Data Analysis and Recovery Chapter 10

[282]

Once the files are extracted to the local machine, use the Oxygen Forensics
SQLite Viewer tool to open the mmssms.db file.

Click on the table named sms and observe the current message under the Tables2.
data tab in the tool.
One way to view the deleted data is by clicking on the Blocks containing deleted3.
data tab, as shown in the following screenshot:

Recovering deleted SMS messages

Similarly, other data residing on Android devices that store data in SQLite files can be
recovered by parsing for deleted content. When the preceding method doesn't provide
access to the deleted data, the examiner should look at the file in raw hex file for data
marked as deleted, which can be manually carved and reported.

Android Data Analysis and Recovery Chapter 10

[283]

Recovering files using file-carving techniques
File carving is an extremely useful method in forensics because it allows data that has been
deleted or hidden to be recovered for analysis. In simple terms, file carving is the process of
reassembling computer files from fragments in the absence of file system metadata. In file
carving, specified file types are searched for and extracted across the binary data to create a
forensic image of a partition or an entire disk. File carving recovers files from the
unallocated space in a drive based merely on file structure and content without any
matching file system metadata. Unallocated space refers to the part of the drive that no
longer holds any file information indicated by the file system structures, such as the file
table.

Files can be recovered or reconstructed by scanning the raw bytes of the disk and
reassembling them. This can be done by examining the header (the first few bytes) and
footer (the last few bytes) of a file.

File carving methods are categorized based on the underlying technique in use. The header-
footer carving method relies on recovering the files based on their header and footer
information. For instance, for JPEG files that start with 0xffd8 and end with 0xffd9. The
locations of the header and footer are identified and everything between those two
endpoints is carved. Similarly, the carving method based on the file structure uses the
internal layout of a file to reconstruct the file. However, the traditional file-carving
techniques, such as the ones that we've already explained, may not work if the data is
fragmented. To overcome this, new techniques, such as smart carving, use the
fragmentation characteristics of several popular file systems to recover the data.

Once the phone is imaged, it can be analyzed using tools, such as Scalpel. Scalpel is a
powerful open source utility to carve files. This tool analyzes the block database storage,
identifies the deleted files, and recovers them. Scalpel is file-system independent and is
known to work on various file systems, including FAT, NTFS, EXT2, EXT3, HFS, and more.
More details about Scalpel can be found at: https://github.com/sleuthkit/scalpel. The
following steps explain how to use Scalpel on an Ubuntu workstation:

Install Scalpel on the Ubuntu workstation using the sudo apt-get install1.
scalpel command.

https://github.com/sleuthkit/scalpel

Android Data Analysis and Recovery Chapter 10

[284]

The scalpel.conf file present under the /etc/scalpel directory contains2.
information about the supported file types, as shown in the following screenshot:

The scalpel configuration file

This file needs to be modified in order to mention the files that are related
to Android. A sample scalpel.conf file can be downloaded
from: https://www.nowsecure.com/tools-and-
trainings/#viaforensics. You can also uncomment the files and save the
conf file to select file types of your choice. Once this is done, replace the
original conf file with the one that is downloaded.

https://www.nowsecure.com/tools-and-trainings/#viaforensics
https://www.nowsecure.com/tools-and-trainings/#viaforensics

Android Data Analysis and Recovery Chapter 10

[285]

Scalpel needs to be run along with the preceding configuration file on the dd3.
image being examined. You can run the tool using the command shown in the
following screenshot by inputting the configuration file and the dd file. Once this
command is run, the tool starts to carve the files and build them accordingly:

Running the Scalpel tool on a dd file

Android Data Analysis and Recovery Chapter 10

[286]

The output folder that was specified in the preceding command now contains4.
lists of folders that are based on the file types, as shown in the following
screenshot. Each of these folders contains data that is based on the folder name.
For instance, jpg 2-0 contains files related to the .jpg extension that has been
recovered:

Output folder after running the Scalpel tool

As shown in the preceding screenshot, each folder contains recovered data from5.
the Android device, such as images, PDF files, ZIP files, and more. While some
pictures are recovered completely, some are not recovered fully, as shown in the
following screenshot:

Recovered data using the Scalpel tool

Android Data Analysis and Recovery Chapter 10

[287]

Applications such as DiskDigger can be installed on Android devices to recover different
types of files from both the internal memory and SD cards. DiskDigger includes support for
JPG files, MP3 and WAV audio, MP4 and 3GP video, raw camera formats, Microsoft Office
files (DOC, XLS, and PPT), and more. However, as mentioned earlier, the application
requires root privileges on the Android device in order to recover the content from the
internal memory. Thus, file-carving techniques play a very important role in recovering
important deleted files from the device's internal memory.

Recovering contacts using your Google account
You can also restore the contacts on the device using the Restore Contacts option through
the Google account that is configured on the device. This would work if the user of the
device has previously synced their contacts using the Sync Settings option available in
Android. This option synchronizes the contacts and other details and would store them in
the cloud. A forensic examiner with legal authority or proper consent can restore the
deleted contacts if they can get access to the Google account configured on the device. Once
the account is accessed, perform the following steps to restore the data:

Log in to your Gmail account.1.
Click on Gmail in the top-left corner and select Contacts, as shown in the2.
following screenshot:

The Contacts menu in Gmail

Click on More, which is present above the contacts list.3.

Android Data Analysis and Recovery Chapter 10

[288]

Click on Restore Contacts, and the following screen will appear:4.

The Restore Contacts dialog box

You can restore the contact list to the state that it was in at any point within the5.
past 30 days using this technique.

Android Data Analysis and Recovery Chapter 10

[289]

Summary
Recovery of the deleted data on Android devices depends on various factors, which heavily
rely on access to the data residing in the internal memory and SD card. While the recovery
of deleted items from external storage, such as an SD card, is easy, the recovery of deleted
items from the internal memory takes considerable effort. SQLite file-parsing and file-
carving techniques are two methods that are used to recover deleted data extracted from an
Android device.

The next chapter discusses forensic analysis of Android apps, malware, and the reverse
engineering of Android apps.

11
Android App Analysis, Malware,

and Reverse Engineering
Third-party applications are commonly used by smartphone users. Android users
download and install several apps from app stores such as Google Play. During forensic
investigations, it is often helpful to perform an analysis of these apps to retrieve valuable
data and to detect any malware. For instance, a photo vault app might lock sensitive images
present on a device. Hence, it would be of great significance to have the knowledge to
identify the passcode for the photo vault app. Also, apps such as Facebook, WhatsApp,
Skype, and so on, are widely used these days, and they are often the source of valuable data
that aids in cracking a case. Hence, it is important to know what kind of data these apps
store and the location of this data. While the data extraction and data recovery techniques
discussed in earlier chapters provide access to valuable data, app analysis would help us
gain information about the specifics of an application, such as preferences and permissions.
In this chapter, we will cover the following topics:

Analyzing some of the most widely used Android apps to retrieve valuable data
Techniques to reverse engineer an Android application
Android malware

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[291]

Analyzing Android apps
On Android, everything the user interacts with is an application. While some apps are
preinstalled by the device manufacturer, others are downloaded and installed by the user.
For example, even routine functions, such as contacts, calls, SMS, and so on, are performed
through their respective apps. Thus, Android app analysis is crucial during the course of an
investigation. Several third-party apps, such as WhatsApp, Facebook, Skype, Chrome
browser, and so on, are used widely, and they handle a lot of valuable information.
Depending on the type of application, most of these apps store sensitive information on the
device's internal memory or SD card. Analyzing them may provide information about the
location details of the user, their communication with others, and more. Using the forensic
techniques described earlier, it is possible to get access to the data stored by these
applications. However, a forensic examiner needs to develop the necessary skills to convert
the available data into useful data. This is achieved when you have a comprehensive
understanding of how the application handles data.

As discussed in previous chapters, all applications store their data in the /data/data
folder by default. Apps also store certain other data on the SD card, if they want to, by
asking permission at the time of installation. Information about applications present on the
device can be gathered by inspecting the contents of the /data/data folder, but this is not
straightforward. As an alternative, you can inspect the packages.list file present under
/data/system. This file contains information about all the apps along with their package
names and data path, as shown in the following screenshot:

Content of the packages.list file

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[292]

We will now cover various third-party apps that are widely used and handle valuable data.
The following apps are covered only to make the reader familiar with the kind of data that
can be extracted and the possible locations where the data can be obtained.

Facebook Android app analysis
The Facebook Android app is one of the most widely used social networking applications.
It stores the information under the /data/data folder, with the com.facebook.katana
package name. The following details provide an overview of the kind of information that
can be gathered across various files:

Facebook contacts: Information about the user's Facebook contacts can be
retrieved by analyzing the contacts_db2 database, which is present under the
following path:

Path:
/data/data/com.facebook.katana/databases/contacts_db
2

The contacts_db2 database (SQLite file) contains a table named
contacts, which has most of the information, such as their first
names, last names, display names, and URL for display picture.

Facebook notifications: Information about a user's notifications can be gathered
by analyzing the notification_db database, which is present under the
following path:

Path:
/data/data/com.facebook.katana/databases/notificatio
ns_db

The gql_notifications table present under the preceding path
holds the information. The seen_state column confirms whether
a notification has been seen or not. The updated column points to
the time when the notification was updated. The gql_payload
column contains the notification and the sender information.

Facebook messages: A Facebook message conversation may be of crucial
importance in several cases and can be viewed by analyzing the threads_db2
database:

Path:
/data/data/com.facebook.katana/databases/threads_db2

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[293]

Videos from newsfeed: The /video-cache folder contains videos downloaded
from the user's newsfeed. Note that these are not the videos posted by the user,
but rather they are the videos that appeared on their newsfeed:

Path: /data/data/com.facebook.katana/files/video-
cache

Images from newsfeed: The /images folder contains various images that appear
on the user's profile, such as the ones from their newsfeed and contact profile
pictures. Several directories are present within this folder and images may be
stored in formats other than .jpg, such as .cnt:

Path: /data/data/com.facebook.katana/cache/images
Newsfeed data: The newfeed_db database contains data shown to the user on
their newsfeed. As shown in the following screenshot, analyzing this database
would provide valuable information, such as when a particular story was loaded
by the device (the fetched_at column), if a particular story was seen by the user
(the seen_state column), and where the corresponding files of a story are
stored on the device (the cache_file_path column):

Path:
/data/data/com.facebook.katana/databases/newsfeed_db

The Facebook newsfeed.db file analyzed in SQLite browser

In the preceding screenshot, fetched_at specifies the date and time when this information
is fetched. Notice that the app uses Linux epoch time, also known as Unix time or Posix
time, to store this information. This format is used very often by multiple apps and, hence,
is worth taking a look at. Linux epoch time is stored as the number of seconds (or
milliseconds) since midnight on January 1, 1970. There are several online sites, such as
https://www.epochconverter.com/, that can readily convert the Linux epoch time into
normal format.

https://www.epochconverter.com/

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[294]

WhatsApp Android app analysis
WhatsApp is the most popular chat (audio and video) messaging service, and is used by
more than a billion people across the globe. It stores the information under the /data/data
folder, with the package name com.whatsapp. The following is an overview of the
important files that are of interest from a forensic perspective:

User's profile pic: The user's profile picture is saved with the filename me.jpg
and is present under the following path:

Path: /data/data/com.whatsapp/me.jpg
User's phone number (associated with WhatsApp): The me file present under the
main folder contains the phone number that is associated with the user's
WhatsApp account. Note that this may or may not be the phone number that is
associated with the SIM:

Path: /data/data/com.whatsapp/me
Contacts profile pic: The /avatars directory has thumbnails of profile pictures
of the user's contacts (who use WhatsApp):

Path: /data/data/com.whatsapp/files/Avatars
Chat messages: All the message-related information, including chats and sender
details, is present in the msgstore.db file, which is present at the following
location:

Path: /data/data/com.whatsapp/databases/msgstore.db
WhatsApp files: Most of the files shared with WhatsApp, such as images, videos,
and audio messages, are stored on the SD card in the following location:

Path: /sdcard/WhatsApp/Media

Both sent and received files are stored separately here with their respective folder names.

Skype Android app analysis
Skype is an app that offers video chat and voice call services. The application's data is
stored under the /data/data folder, with the package name com.skype.raider. The
following are important artifacts that can be extracted by analyzing the Skype app:

Username and IP address: The shared.xml file present under the following
path contains information about the username and the last IP address that
connected to Skype:

Path: /data/data/com.skype.raider/files/shared.xml

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[295]

Profile picture: The user's profile picture is present in the /thumbnails
directory, whose path is as follows:

Path:
/data/data/com.skype.raider/files/<username>/thumbna
ils/

Call logs: Information about call logs made from Skype is available in the
main.db file. Analyzing this file gives us a lot of information:

Path:
/data/data/com.skype.raider/files/<username>/main.db
/

For example, the duration table provides information about call
duration, the start_timestamp field gives the start time of a call,
and the creation_timestamp field indicates when the call is
initiated (this includes unanswered calls). The type column
indicates whether the call was incoming (value= 1) or outgoing
(value= 2).

Chat messages: The messages table present in the main.db file contains all the
chat messages. The author and from_dispname columns provide information
about who wrote the message. The timestamp column shows the date/time of
the message. The body_xml column contains the content of the message:

Path:
/data/data/com.skype.raider/files/<username>/main.db
/

Files transferred: The Transfers table contains information about transferred
files, such as the filename, the size of the file, and their location on the device:

Path:
/data/data/com.skype.raider/files/<username>/main.db
/

The actual images or files received will be stored in an SD card. If a
file is downloaded, it would be in the Downloads folder in the root
of the SD.

Group chats: The ChatMembers table shows a list of users who are present in a
particular chat. The adder column shows the user who initiated the conversation:

Path:
/data/data/com.skype.raider/files/<username>/main.db
/

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[296]

Gmail Android app analysis
Gmail is a widely used email service offered by Google. The application data is saved under
the /data/data folder, with the package name com.google.android.gm. The following
are important artifacts that can be extracted by analyzing the Gmail app:

Account details: The XML files present under /shared_prefs confirm the email
account details. Details of other accounts, which are linked to the current email,
can be identified from the Gmail.xml file:

Path:
/data/data/com.google.android.gm/cache/<username>@gm
ail.com

Attachments: Attachments that are recently used in both sending and receiving
emails are saved to the /cache directory. This is valuable because it gives access
to items deleted from the email too. Each row also contains a
messages_conversation value. This value can be compared with the
conversations table to an attachment with the email it was included within.
The filename column identifies the path on the device where the file is located.
The following is the exact path for this folder:

Path:
/data/data/com.google.android.gm/cache/<username>@gm
ail.com

List of attachments present under Gmail's cache directory

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[297]

Email subject: The subject of this email can be recovered by analyzing the
conversations table present in the mailstore.<username>@gmail.com.db
file:

Path:
/data/data/com.google.android.gm/databases/mailstore
.<username>@gmail.com.db

Search history: Any text searches that were made within the app are stored in the
suggestions.db file present at the following location:

Path:
/data/data/com.google.android.gm/databases/suggestio
ns.db

Google Chrome Android app analysis
Google Chrome is the default web browser in Nexus and many other devices, and it is used
widely to browse the internet. The application data is present under the /data/data
folder, with the package name com.android.chrome. The following are important artifacts
that can be extracted by analyzing the Gmail app:

Profile picture: The profile picture of the user is stored with the filename Google
Profile Picture.png in the following location:

Path:
/data/data/com.android.chrome/app_chrome/Default/
Google Profile Picture.png

Bookmarks: The Bookmarks file contains information about all the bookmarks
synced with the account. Details, such as the site name, URL, and the time when
it was bookmarked, can be gathered by analyzing this file:

Path:
/data/data/com.android.chrome/app_chrome/Default/Boo
kmarks

Browsing history: The History.db file contains the user's web history stored in
the various tables. For example, as shown in the following screenshot, the
keyword_search_terms table contains information about the searches that were
made using the Chrome browser:

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[298]

Google Chrome browsing history

The segments table contains a list of sites visited by the user (but
not all of the sites). It's interesting to note that Chrome stores the
data belonging to not just the device, but the account in general. In
other words, information about sites visited from other devices
using the same account is also stored on the device. For example,
the URLs table contains the browsing history for a Google account
across several devices.
Path:
/data/data/com.android.chrome/app_chrome/Default/His
tory

Login Data: The Login Data database contains login information of different
sites saved in the browser. The site URL, along with the username and password,
is stored in the respective tables:

Path:
/data/data/com.android.chrome/app_chrome/Default/Log
in Data

Frequently visited sites: The Top Sites database contains a list of frequently
visited sites:

Path:
/data/data/com.android.chrome/app_chrome/Default/Top
Sites

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[299]

Other data: Other information, such as the phone numbers or email addresses
entered by the user during form fills across different sites, is stored in the Web
Data database. Tables present within this database contain autofill data:

Path:
/data/data/com.android.chrome/app_chrome/Default/Web
Data

Reverse engineering Android apps
The examiner may need to deal with applications that stand as a barrier to accessing the
required information. For instance, take the case of the gallery on a phone that is locked by
an AppLock application. In this case, in order to access the pictures and videos stored in the
gallery, you first need to enter the passcode to the AppLock. Hence, it would be interesting
to know how the AppLock app stores the password on the device. You might look into the
SQLite database files. However, if they are encrypted, then it's hard to even tell that it's a
password. Reverse engineering applications would be helpful in such cases where you want
to better understand the application and how the application stores the data.

To state it in simple terms, reverse engineering is the process of retrieving source code from
an executable. Reverse engineering an Android app is done in order to understand the
functioning of the app, data storage, the security mechanisms in place, and more. Before we
proceed to learn how to reverse engineer an Android app, here is a quick recap of the
Android apps:

All the applications that are installed on the Android device are written in the
Java programming language.
When a Java program is compiled, we get bytecode. This is sent to a dex
compiler, which converts it into a Dalvik bytecode.
Thus, the class files are converted to dex files using a dx tool. Android uses
something called Dalvik virtual machine (DVM) to run its applications.
JVM's bytecode consists of one or more class files depending on the number of
Java files that are present in an application. Regardless, a Dalvik bytecode is
composed of only one dex file.

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[300]

Thus, the dex files, XML files, and other resources that are required to run an application
are packaged into an Android package file (an APK file). These APK files are simply
collections of items within ZIP files. Therefore, if you rename an APK extension file to .zip,
then you will be able to see the contents of the file. However, before you can do this, you
need to get access to the APK file of the application that is installed on the phone. Here is
how the APK file corresponding to an application can be accessed.

Extracting an APK file from an Android device
Apps that come preinstalled with the phone are stored in the /system/app directory.
Third-party applications that are downloaded by the user are stored in the /data/app
folder. The following method helps you gain access to the APK files on the device; it works
on both rooted and nonrooted devices:

Identify the package name of the app by issuing the following command:1.

List of package names present on the device

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[301]

As shown in the preceding command-line output, the list of package names is
displayed. Try to find a match between the app in question and the package
name. Usually, the package names are very much related to the app names.
Alternatively, you can use the Android Market or Google Play to identify the
package name easily. The URL for an app in Google Play contains the package
name, as shown in the following screenshot:

Facebook App in Google Play Store

Identify the full pathname of the APK file for the desired package by issuing the2.
following command:

Pull the APK file from the Android device to the forensic workstation using the3.
adb pull command:

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[302]

You can also use applications such as ES Explorer to get the APK file of an Android
application. Now, let's analyze the contents of an APK file. An Android package is a
container for an Android app's resources and executables. It's a zipped file that contains the
following files:

AndroidManifest.xml: This contains information about the permissions and
more
classes.dex: This is the class file converted to a dex file by the dex compiler
Res: The application's resources, such as the image files, sound files, and more,
are present in this directory
Lib: This contains native libraries that the application may use
META-INF: This contains information about the application's signature and
signed checksums for all the other files in the package

Once the APK file is obtained, you can proceed to reverse engineer the Android application.

Steps to reverse engineer Android apps
APK files can be reverse engineered in different ways to get the original code. The following
is one method that uses the dex2jar and JD-GUI tools to gain access to the application
code. For our example, we will examine the com.twitter.android-1.apk file. The
following are the steps to successfully reverse engineer the APK file:

Rename the APK extension to ZIP to see the contents of the file. Rename the1.
com.twitter.android-1.apk file to twitter.android-1.zip, and extract
the contents of this file using any file archiver application. The following
screenshot shows the files extracted from the original file
twitter.android-1.zip:

Extracted files of an APK file

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[303]

The classes.dex file discussed in the earlier sections can be accessed after2.
extracting the contents of the APK file. This dex file needs to be converted to a
class file in Java. This can be done using the dex2jar tool.
Download the dex2jar tool from https://github.com/pxb1988/dex2jar, drop3.
the classes.dex file into the dex2jar tools directory, and issue the following
command:

C:\Users\Rohit\Desktop\Training\Android\dex2jar-0.0.9.15>d2j-
dex2jar.bat classes.dex dex2jar classes.dex -> classes-dex2jar.jar

When the preceding command is successfully run, it creates a new classes -4.
dex2jar.jar file in the same directory, as shown in the following screenshot:

The classes-dex2jar.jar file created by the dex2jar tool

To view the contents of this JAR file, you can use a tool such as JD-GUI. As5.
shown in the following screenshot, the files present in an Android application
and the corresponding code can be seen:

https://github.com/pxb1988/dex2jar

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[304]

The JD-GUI tool

Once we get access to the code, it is easy to analyze how the application stores the values,
permissions, and more information that may be helpful to bypass certain restrictions. When
malware is found on a device, this method to decompile and analyze the application may
prove useful, as it will show what is being accessed by the malware and provide clues to
where the data is being sent. The following sections focus on Android malware in detail.

Android malware
As Android's market share continues to increase, so do attacks or malware targeted at
Android users. Mobile malware is a broad term that refers to a piece of software that
performs unintended actions and includes Trojans, spyware, adware, ransomware, and
others. According to Pulse Secure, 97 percent of mobile malware is focused at the Android
operating system
(https://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-an
droid/article/535410/). As per statistics released by G DATA software, almost 4,900 new
Android samples are being discovered every day. The following URL will take you to a
sample screenshot that shows the rise of Android malware over the past few years,
referenced from https:/ ​/ ​www. ​gdatasoftware. ​com/ ​blog/ ​2017/ ​04/ ​29712- ​8-​400- ​new-
android-​malware- ​samples- ​every- ​day.

https://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/535410/
https://www.scmagazineuk.com/updated-97-of-malicious-mobile-malware-targets-android/article/535410/
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[305]

One of the primary reasons for this situation is that, unlike Apple's App Store, which is
tightly controlled by the company, Google's Play Store is an open ecosystem without any
detailed upfront security reviews. Malware developers can easily move their apps to Play
Store and thereby distribute their apps. Google now has a malware-detecting software
named Google Bouncer, which will automatically scan an uploaded app for malware, but
attackers have figured out several ways to remain undetected. Moreover, Android officially
allows the loading of apps downloaded over the internet (side-loading), unlike iOS, which
does not allow unsigned apps. For example, as shown in the following screenshot, when the
Unknown sources option is selected on an Android device, it allows the user to install apps
that are downloaded from any site over internet:

Side-loading option in Android

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[306]

The third-party app stores that host Android apps are known to be hubs of malware. This
prompted Google to roll out the Verify Apps feature starting from Android 4.2, which scans
apps locally on Android devices to look for malicious activities, such as SMS abuse. As
shown in the following screenshot, the Verify apps feature may warn the user, or in some
cases may even block the installation. However, this is an opt-in service, so users can
disable this feature if they choose to:

Verify apps feature in Android

Once malware gets into a device, it can perform dangerous actions, some of which are
listed, as follows:

Send and read your text messages
Steal sensitive data, such as pictures, videos, and credit card numbers
Manipulate files or data present on the device
Send SMS to a premium-rated number
Infect your browser and steal any data typed into its Change device settings
Wipe all data present on the device
Lock the device until a ransom is paid
Display advertisements continuously

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[307]

Advanced malware is also capable of rooting the device and installing new apps. For
example, the Android Mazar malware, discovered in Feb 2016, spreads via text messages
and is capable of gaining administrator rights on phones, allowing it to wipe handsets,
make calls, or read texts.

A full list of Android malware families and their capabilities is available
at https://forensics.spreitzenbarth.de/android-malware/.

How does malware spread?
An Android device can be infected with malware in several different ways. The following
are some of the possible ways:

Repackaging legitimate application: This is the most common method used by
attackers. The attacker first downloads a legitimate application, disassembles it,
then adds their malicious code, and reassembles the application. The new
malicious application now functions exactly as the legitimate application does,
but it also performs malicious activity in the background. This kind of application
is commonly found in the third-party Android app stores and is downloaded by
many people.
Exploiting Android vulnerabilities: In this scenario, an attacker exploits the bugs
or the vulnerabilities that are discovered in the Android platform to install their
malicious application or to perform any unwanted actions. For example, installer
hijacking, identified in 2015, has been exploited by attackers to replace an
Android application with malware during installation.
Bluetooth and MMS propagation: Malware is also spread via Bluetooth and
MMS. The victim receives the malware when the device is in discoverable mode,
for example, when it can be seen by other Bluetooth-enabled devices. In the case
of MMS, the malware is attached to the message just as computer viruses are sent
through email attachments. However, in both these methods, the user has to
agree, at least once, to run the file.
App downloading malicious update: In this case, the app originally installed
does not contain any malicious code, but a function present within the code will
download malicious commands at runtime. This can be done via a stealthy
update or user update. For example, the Plankton malware uses stealthy updates
that directly download a JAR file from a remote server and do not need any user
permission. In the case of user updates, the user has to allow the app to
download the new version of the app.

https://forensics.spreitzenbarth.de/android-malware/

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[308]

Remote install: The attacker may compromise the credentials of the user's
account on the device and thereby remotely install apps on the device. This
generally happens in targeted scenarios and is less frequent compared to the
previous two methods just described.

Identifying Android malware
From a forensic perspective, it's important to identify the presence of any malware on the
device prior to performing any analysis. This is because malware can alter the state of the
device or contents on the device, thereby making the analysis or the results inconsistent.
Information about various types of Android malware apps and their descriptions is
provided at https://forensics.spreitzenbarth.de/android-malware/. There are tools
available on the market that can analyze the physical extraction to identify malware. For
example, Cellebrite UFED Physical Analyzer has BitDefender's anti-malware technology,
which scans for malware. As shown in the following screenshot, once the physical image is
loaded into the tool, the file can be scanned for malware.

Scanning for malware in UFED Physical Analyzer

https://forensics.spreitzenbarth.de/android-malware/

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[309]

Once the scan starts, the BitDefender software tries to unpack the .apk files and looks for
infected or malicious files. The process is automatic and the tool points to the malicious
apps, as shown in the following screenshot:

Malware scanner results in UFED Physical Analyzer

The tool simply points out that something malicious is present on the device. The forensic
investigator has to then manually confirm whether this is a valid issue by analyzing the
respective application. This is where the reverse engineering skills that were discussed in
previous sections need to be leveraged. Once the application is reverse engineered and code
is obtained, it is recommended that you take a look at the AndroidManifest.xml file to
find out the app permissions. This will be helpful for understanding where the app stores
the data, what resources it is trying to access, and more. For example, a Flashlight
application does not need read/write access to your SD card data, or to make a call.

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[310]

Permissions in the AndroidManifest.xml file

It's also important to note that the tool may not identify a valid case if the details are
obfuscated in the .apk file. Hence, as a forensic investigator, it's important to develop the
necessary skills to reverse engineer any suspicious apps and analyze the code to identify
malicious behavior. In some investigations, the nature of the malware that is present on a
device may also result in arriving at certain crucial conclusions, which may affect the
outcome of the case. For example, consider an internal investigation in a corporation that
involves sending abusive messages to other employees. Identifying malware on the device
that sends the messages would help to solve the case.

Android App Analysis, Malware, and Reverse Engineering Chapter 11

[311]

Summary
Android app analysis helps a forensic investigator to look for valuable data in relevant
locations on a device. Reverse engineering Android apps is the process of retrieving source
code from an APK file. Using certain tools, such as dex2jar, Android apps can be reverse
engineered in order to understand their functionality and data storage, identify malware,
and more. Identifying malware present on a device is crucial, as it may affect the outcome
of an investigation. Tools such as UFED Physical Analyzer come with BitDefender software,
which can automatically scan for malware. The next chapter covers performing forensics on
Windows Phone devices.

12
Windows Phone Forensics

Windows Phones are becoming more widely used, and they may be encountered during
forensic investigations. These devices are the most affordable on the market, so
understanding how to acquire, analyze, and decode data from Windows Phones is
important. Locating and interpreting digital evidence present on these devices requires a
specialized knowledge of the Windows Phone operating system, and may not always be
possible. Commercial forensic and open source tools provide limited support for acquiring
user data from Windows devices. As Windows Phones do not occupy much of the mobile
market space, most forensic practitioners are unfamiliar with the data formats, embedded
databases used, and other artifacts that exist on the device. This chapter provides an
overview of Windows Phone forensics, describing various methods of acquiring and
examining data on Windows mobile devices.

In this chapter, we will cover the following topics:

Windows Phone OS
Windows Phone security
Jailbreaking
Windows Phone forensic acquisition and analysis

Windows Phone OS
Windows Phone is a proprietary mobile operating system developed by Microsoft. It was
launched as a successor to Windows Mobile, but it does not provide backward
compatibility with the previous platform. Windows Phone was launched in October 2010
with Windows Phone 7. The version history of the Windows Phone operating system then
continued with the release of Windows Phone 7.5, Windows Phone 7.8, Windows Phone
8.1, and Windows Phone 10.

Windows Phone Forensics Chapter 12

[313]

Despite the fact that Microsoft claim they have stopped developing this mobile operating
system, excluding security patches, you are likely to face it as a mobile forensic examiner.

The following sections will provide more details about Windows Phone, its features, and its
underlying security model.

Unlike Android and iOS devices, Windows Phone comes with a new interface, which uses
so-called tiles for apps instead of icons, as shown in the following figure. These tiles can be
designed and updated by the user:

The Windows Phone home screen

Windows Phone Forensics Chapter 12

[314]

Similar to other mobile platforms, Windows Phone allows for the installation of third-party
apps. These apps can be downloaded from the Windows Phone Marketplace, which is
managed by Microsoft. When comparing the number of apps available for iOS and Android
devices, Windows Phone pales in comparison. However, applications are available and the
examiner should expect to see them on Windows Phone devices.

Windows Phone introduced new features, making it more similar to other smartphones as
compared to Windows Mobile:

Cortana: This is the personal assistant for the device. It was introduced in
Windows 8.1 and is still present on Windows 10 devices. Cortana aids the user by
fielding questions using Bing, setting reminders, sending texts, and essentially
using all the functionality to provide the user with a better and easier experience.
Everything that Cortana does leaves a trace on the device.
Wallet: This stores credit card accounts, boarding passes, tickets, coupons, and
more.
Geofence and advanced location settings: These provide the user with
additional protection as the phone can detect when it is out of a trusted zone and
may lock itself.
Additional features: These are features such as live tiles, enhanced colors, and
quiet hours.

Other common applications associated with Windows Phone include OneDrive (formerly
SkyDrive), OneNote, and Office 365 synchronization. OneDrive provides the user with
access to all of their documents and files from any device. OneNote is essentially the same,
but it acts as a notebook or diary. Office 365 provides the user with constant access to their
email, calendar, contacts, and more across multiple devices.

Windows Phone Forensics Chapter 12

[315]

The introduction of data synchronization across multiple devices makes our job as forensic
examiners difficult. It is our job to determine how the evidence was placed on the device. Is
it possible to definitively state how an artifact was placed on a device? To be honest, this
depends. Nobody wants to hear this response, but a lot of factors must be considered. What
is the app? What OS is running on the device? What is the artifact? For example, let's
consider SkyDrive. If the device contains documents from SkyDrive, the original author
should be contained within the metadata. This, together with examining whether or not the
content was shared to the device, may provide a glimpse into how the artifact was created.
However, when examining a calendar entry when Office 365 is in place, it may be
impossible to state whether the user created the entry on their phone, PC, or laptop. The
synchronization is instantaneous, and status flags stating where the artifact was created do
not always exist. If this artifact is indeed the smoking gun of the investigation, you need to
apply your skills to uncover other artifacts that support your findings. Digging deeper into
the data is required.

Security model
The security model of Windows Phone is designed to make sure that the user data present
on the device is safe and secure. The following sections provide a brief explanation of the
concepts on which Windows Phone security is built.

Chambers
Windows Phone is heavily built on the principles of least privilege and isolation. This has
been consistent since the inception of Windows Phone 7. To achieve this, Windows Phone
introduced the concept of chambers. Each chamber has an isolation boundary where
processes can run. Depending on the security policy of a specific chamber, a process
running in this chamber has the privilege of accessing the OS's resources and capabilities
(https:/​/​www.​msec. ​be/ ​mobcom/ ​ws2013/ ​presentations/ ​david_ ​hernie. ​pdf). There are four
types of security chambers. The following is a brief description of each one of them:

Trusted Computing Base (TCB): The processes here have unrestricted access to
most Windows Phone resources. This chamber has privileges to modify policies
and enforce the security model. The kernel runs in this chamber.

https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf
https://www.msec.be/mobcom/ws2013/presentations/david_hernie.pdf

Windows Phone Forensics Chapter 12

[316]

Elevated Rights Chamber (ERC): This chamber is less privileged than the TCB
chamber. It has privileges to access all resources except the security policy. This
chamber is mainly used for services and user-mode drivers, which provide
functionality intended for use by other applications on the phone.
Standard Rights Chamber (SRC): This is the default chamber for preinstalled
applications, such as Microsoft Outlook Mobile 2010.
Least Privileged Chamber (LPC): This is the default chamber for all the
applications that are downloaded and installed through the Marketplace Hub
(which is also known as the Windows Phone Marketplace).

Encryption
Windows Phone 8 introduced BitLocker technology to encrypt all user data that is stored on
the device via AES 128-bit encryption. The user can simply flip the switch to enable this
feature, and all of their data residing on the internal storage of the device is encrypted. In
addition, the user can encrypt their SD card, assuming the device has one, and set a
password or PIN on their device. Should all of these locks and the encryption be enabled,
accessing the data on this device may be impossible, unless the password is recovered.

Capability-based model
Capabilities are defined as the resources on the phone (camera, location information,
microphone, and more) associated with security, privacy, and cost. The LPC has a minimal
set of access rights by default. However, this can be expanded by requesting more
capabilities during the installation. Capabilities are granted during the app installation and
cannot be modified or elevated during runtime. For this reason, it is difficult to side-load
applications or force custom bootcode to the device to gain forensic access, as it is normally
rejected prior to bootup.

Windows Phone Forensics Chapter 12

[317]

To install an app on a Windows Phone, you need to sign in to Marketplace with a Windows
Live ID. During installation, apps are required to ask the user for permission before using
certain capabilities, an example of which is shown in the following screenshot:

Windows app requesting user permissions (https://i-msdn.sec.s-msft.com/dynimg/IC752370.png)

This is similar to the permission model in Android. This gives the user the freedom to learn
about all the capabilities that an application has before installing the application. The list of
all capabilities is included in the WMAppManifest.xml application manifest file, which can
be accessed through Visual Studio or other methods that are defined at https:/ ​/​docs.
microsoft.​com/​en- ​us/ ​previous- ​versions/ ​windows/ ​apps/ ​ff769509(v= ​vs.​105).

https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)
https://docs.microsoft.com/en-us/previous-versions/windows/apps/ff769509(v=vs.105)

Windows Phone Forensics Chapter 12

[318]

App sandboxing
Apps in Windows Phone run in a sandboxed environment. This means every application on
Windows Phone runs in its own chamber. Applications are isolated from each other and
cannot access the data of other applications. If any app needs to save information to the
device, it can do so using the isolated storage, which is restricted from access by other
applications. Also, the third-party applications installed on Windows Phone cannot run in
the background; that is, when the user switches to a different application, the previously
used application is shut down (although the application state is preserved). This ensures
that the application cannot perform activities such as communicating over the internet
when the user is not using the application. These restrictions also make Windows Phone
less susceptible to malware, but never assume that any device is safe. It is just more
challenging for malware to function on these devices.

Windows Phone filesystem
The Windows Phone filesystem is more or less similar to the filesystems used in Windows
7, Windows 8, and Windows 10. From the root directory, one can reach different files and
folders that are available on this device. From a forensic perspective, the following are some
of the folders that can yield valuable data. All the listed directories are located in the root
directory:

Application data: This directory contains data of preinstalled apps on the phone,
such as Outlook, Maps, and Internet Explorer.
Applications: This directory contains the apps installed by the user. The isolated
storage, which is allocated or used by each app, is also located in this folder.
My Documents: This directory holds different Office documents, such as Word,
Excel, or PowerPoint files . The directory also includes configuration files and
multimedia files, such as music or videos.
Windows: This directory contains files that are related to the Windows Phone
operating system.

Windows Phone Forensics Chapter 12

[319]

The acquisition method used here will determine the amount of filesystem access that the
examiner has to the device. For example, a physical image may provide access to several
partitions that can be recovered from the data dump. We are looking at a Windows Phone
10 device that contains 27 partitions in the following screenshot. Partitions 26 (MainOS)
and 27 (Data) contain the relevant data:

Windows Phone 10 partitions

While most artifacts will exist in the Data partition, it is always best
practice to capture and analyze both when possible.

The MainOS partition in the preceding screenshot, partition 26, contains the system data
from the Windows Phone. As in all Windows investigations, the system data contains
artifacts relevant to investigations.

Windows Phone Forensics Chapter 12

[320]

In this example, partition 27 contains the User or Data partition. Depending on the device,
the partition numbers may vary. In our example, the Data partition is shown in the
following figure as partition 27. Here, the SMS, email, application data, contacts, call logs,
and internet history were recovered using mobile forensic tools. These methods will be
discussed later in this chapter:

Windows Phone 10 Data partition

Windows Phone also maintains the Windows registry, a database that stores environment
variables on the operating system. The Windows registry is basically a directory that stores
settings and options for the Microsoft operating system. Windows Phone is no different.
When examining a Windows Phone, an examiner will expect to see the NTUSER.dat, SAM,
SYSTEM, SOFTWARE, SECURITY, and DEFAULT hives. While these hives may be unique to the
phone, they can be examined just like traditional Windows registry hives.

A detailed case investigation is included in a paper by Cynthia Murphy. This involves a
criminal case of a home invasion and sexual assault, and details the efforts of great minds in
the forensic community to uncover artifacts that assisted in closing the investigation.
Sometimes, the mobile device is the most important artifact pertaining to the case. For more
information, refer to https:/ ​/ ​www. ​sans. ​org/ ​reading- ​room/ ​whitepapers/ ​forensics/
windows-​phone-​8- ​forensic- ​artifacts- ​35787.

https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787
https://www.sans.org/reading-room/whitepapers/forensics/windows-phone-8-forensic-artifacts-35787

Windows Phone Forensics Chapter 12

[321]

Data acquisition
Acquiring data from a Windows Phone is challenging for forensic examiners, as the
physical, file system, and logical methods that were defined in previous chapters are not
greatly supported. In addition to this, the phone may need to be at a specific battery charge
state (%) in order for the commercial tool to recognize and acquire the device. This is often
one of the most difficult steps in acquiring Windows Phones.

One of the most common techniques implemented by commercial tools attempting data
acquisition is to install an application or agent on the device, which enables two-way
communication for commands to be sent to the device in order to extract data. This could
result in certain changes on the device; nevertheless, this is still forensically sound if the
examiner follows standard protocols and has tested the validity of the tool being used.
These protocols include proper testing to ensure no user data is changed (and if changed,
documenting what occurred), validation of the method on a test device, and documenting
all steps taken during the acquisition process. For this acquisition method to work, the app
needs to be installed with the privileges of the SRC. This may require the examiner to copy
the manufacturer's DLLs, which have higher privileges, into the user app. This allows the
app to access methods and resources that are usually limited to native apps. In addition to
this, the device must be unlocked, or these methods may not work.

Most examiners rely on forensic tools and methods to acquire mobile devices. Again, these
practices are not as supported for Windows Phones. Keep in mind that to deploy and run
an app on Windows Phone, both the device and the developer must be registered and
unlocked by Microsoft. This restriction can be bypassed by unlocking the device using a
public jailbreak for Windows Phone 8 to 10 devices.

For quite a long time, JTAG and chip-off acquisitions were the only options to acquire most
Windows Phones. Everything changed in January 2015: Cellebrite implemented an
acquisition module which allowed mobile forensic examiners to extract data on the physical
level from most Lumia devices.

Later, the Windows Phone Internals project presented a way to unlock the bootloader of
some Lumia devices, including 520, 521, 525, 620, 625, 720, 820, 920, 925, 928, 1020, and 1320.
This made physical acquisition of these devices possible. You can learn more about the
project here: https:/ ​/ ​www. ​wpinternals. ​net/​.

https://www.wpinternals.net/
https://www.wpinternals.net/
https://www.wpinternals.net/
https://www.wpinternals.net/
https://www.wpinternals.net/
https://www.wpinternals.net/
https://www.wpinternals.net/
https://www.wpinternals.net/
https://www.wpinternals.net/
https://www.wpinternals.net/

Windows Phone Forensics Chapter 12

[322]

Commercial forensic tool acquisition
methods
There are a few commercial tools available that offer support for the acquisition of
Windows Phone devices. Cellebrite UFED offers support to acquire Windows Phone
devices using the physical, file system, and logical methods. To determine whether the
device you are examining is supported by the tool, you can download and use the UFED
Phone Detective mobile app, which is available for free both in App Store and Google Play:

Searching for supported Lumia devices

Some of these acquisition methods are more robust, obtain a full physical dump of the data,
and can bypass some lock codes on specific devices. However, some device support
includes simply extracting contacts and pictures from the device. It is important for the
examiner to realize that specific steps must be taken as directed by the tool. Acquiring these
devices is not easy, and often the examiner will find that the tool will not be successful.

Windows Phone Forensics Chapter 12

[323]

When the tool seems to fail, attempt to acquire the device using the Smartphone/PDA
option offered in UFED. To do this, follow these steps:

Launch UFED4PC and select Mobile Device.1.
Select Browse Manually.2.
Select Smartphones.3.
Select the Windows device that you are attempting to acquire.4.
Try all the methods that are offered, starting with physical, file system,5.
and logical (in that order, where possible):

Extraction methods

Follow all the remaining steps and try all offered acquisition methods until6.
successful.

Cellebrite may alert you that the acquisition is not successful for several reasons. When this
occurs, try every option to ensure you have exhausted the commercial options available. An
example of an acquisition attempt in UFED4PC is shown as follows:

Launch UFED4PC.1.
Select your Make and Model for the device.2.
Select the Physical, File System, or Logical acquisition method (offerings will3.
vary depending on the device model).

Windows Phone Forensics Chapter 12

[324]

In this example, only the Logical acquisition was supported. Two methods are available.
The first option uses a cable, and the second uses Bluetooth. In this example, a special UFED
cable is required. I selected the UFED cable first, as Bluetooth requires that additional
changes be made to the phone during pairing:

UFED4PC Logical extraction options

When attempting to acquire the device with USB cable 100, only multimedia files were
accessible.

Then, attempt the same acquisition, but select Bluetooth. Follow the instructions to pair the
device to the forensic workstation:

UFED4PC extraction options (Bluetooth)

With this acquisition method, we were able to obtain contacts. Note that there was not a
method offered to obtain SMS, MMS, Email, IM, Calendar, Call Logs, Apps Data, and
others. It is suggested you repeat the generic methods listed in the previous screenshot
using the Smartphone option in UFED4PC.

Windows Phone Forensics Chapter 12

[325]

Extracting data without the use of commercial
tools
On an unlocked device, it may be possible to run an app that can extract the user data
present in the phone. This device may have to be jailbroken for this to work. Several apps
that do this are available, and they depend on the version of Windows running on the
phone and the version on your forensic PC. Two apps will be covered in this section. The
first is TouchXperience and the second is Windows Phone app for Desktop.

The TouchXperience app, which comes with the Windows Mobile Device Manager
(WMDM), can be used for this purpose. WPDM is the management software for Windows
Phone 7. The TouchXperience client app extracts data, such as the filesystem, from the
mobile device, and WPDM retrieves this data and converts it into a human-readable
graphical format. The following are the steps that will help a forensic examiner extract user
data present on an unlocked Windows Phone device:

Download Windows Phone SDK 7.1 and the Zune software on the forensic1.
workstation, and install it (https:/ ​/​www. ​microsoft. ​com/ ​en-​us/ ​download/
details. ​aspx? ​id= ​27570).
Download the Windows Phone Device Manager on the workstation, and launch2.
WPDeviceManager.exe (http:/ ​/ ​www.​touchxperience. ​com/ ​windows- ​phone-
device-​manager/ ​).
Connect the device to the workstation, and it should be detected automatically. If3.
it is not detected, make sure that a passcode is not set on the device. If it is, this
process may fail if the passcode is unknown.
Windows Phone Device Manager will automatically install the TouchXperience4.
app when the phone is connected for the first time. Make sure that you set what
the software is allowed to do on the device (that is, make sure not to change the
user data, update date/time settings, or do anything else that will modify the user
data). Make sure to document that TouchXperience was installed in order to
extract data from the Windows Phone, as standard forensic methods provide
little support for these devices.

https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
https://www.microsoft.com/en-us/download/details.aspx?id=27570
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/
http://www.touchxperience.com/windows-phone-device-manager/

Windows Phone Forensics Chapter 12

[326]

Thereafter, the following screen is presented, providing access to a vast number of files that
are present on the device:

Windows Phone Device Manager

Windows Phone Forensics Chapter 12

[327]

The home screen displays information about the model of the phone, OS version, and more.
Click on Manage applications to see the information about installed apps on the device, as
shown in the next screenshot. WPDM also provides other functionality, such as media
management and synchronization of files and folders. From a forensic point of view, the file
explorer is the most interesting part of this software. It provides read, write, and executable
access to most of the files that are present on the Windows Phone 7 device:

Windows Phone Device Manager – the Manage applications screen

Using this acquisition technique, you can access two types of data: system data and
application data. System data is mainly the data that is required to run the device, and
application data is the data created and used by different applications that are installed on
the device. While system data may not contain data relevant to your investigation,
application data is very valuable. Regardless, all data should be acquired from any
smartphone, as the examination must be complete and capture all the data contained on the
device when possible. The following sections discuss the steps to be followed to extract
application data from a Windows Phone device. The application data will contain the bulk
of the user-created data, and it will provide the most value to your investigation.

Windows Phone app for Desktop works like the app that we just defined, but it supports
the Windows Phone 8 device. Note that both the phone and the SD card can be accessed.
The user relies on this app to transfer and sync files, similarly to how iPhone users rely on
iTunes. Examiners rely on this app as a method to extract user artifacts when all other
options are exhausted. When attempting to acquire data from the SD card, please refer to
the methods discussed later in this chapter:

Windows Phone Forensics Chapter 12

[328]

Windows Phone app for Desktop

Other options for Windows 8.1 include the Windows Phone App and Phone Companion
App for Windows 10 devices. These apps provide the user with additional functionality
and allow for the copying of files from the PC to the device and/or SD card.

SD card data extraction methods
Windows Phones may contain removable SD cards. These cards may be secured with a key
that prevents the SD card from being removed and used, or accessed via other devices
(phones, cameras, computers, and more). This is different from the key that is created if the
user encrypts the SD card. Brute force and dictionary attacks can be run on user-encrypted
SD cards to attempt to access the data. When examining a Windows Phone, it is best to
research the device to see whether SD card security will be a factor when acquiring data
from the device. If so, simply follow the preceding steps and acquire the SD card data
through the phone during forensic extraction; or refer to the following chart.

Windows Phone Forensics Chapter 12

[329]

For devices where the SD card can be removed, you have two scenarios to consider. If the
device is on, should you acquire the phone and the SD card as is? If the device is off, should
you remove the SD card and acquire the device using FTK Imager? The answer is: it
depends. In forensics, we use this statement frequently, but it remains true. If you leave the
device on, it must be isolated from the network to ensure that it is not remotely accessed
and immediately acquired, or the battery will drain and, ultimately, the device may power
down. If the device is off and you remove the SD card, you must ensure that the card
remains tied to the device itself and is acquired both externally and internally to ensure all
data is captured. In a normal situation, the following chart suggests the recommended steps
to handle SD cards that are found in Windows Phones:

Most commercial forensic tools will offer to extract data from SD cards. Often, the phone
extraction will only be data residing on the SD card. This is often the case when there is no
support for a specific Windows Phone. If the SD card is not recognized by the tool and the
data is not extracted, it is likely that the SD card has been encrypted by the user, and the
password for the device is different from the password for the SD card. When this occurs,
try to crack the passcode and reacquire the device. Note that cracking a passcode on an SD
card may not always be possible, but it's worth a shot using brute force and dictionary
attacks as you would on a standard hard drive or external device.

Windows Phone Forensics Chapter 12

[330]

When acquiring an SD that has been removed from a Windows Phone, FTK Imager is a free
and reliable option to create a forensically sound image that can be examined in a variety of
tools. To create an SD card image, follow these steps:

Remove the SD card from the device and make sure to document all identifiers1.
on the card and the phone to ensure that they are not permanently separated.
Insert the SD card into a write blocker and insert this into your forensic2.
workstation.
Launch FTK Imager.3.
Select File and then select Create Disk Image.4.
Select Physical Drive:5.

FTK Imager – creating a disk image

Use the drop-down list to select the correct device.6.

Look at the make and size to ensure that you are acquiring the correct
device.

Select Finish.7.

Windows Phone Forensics Chapter 12

[331]

Click on Add and select the image type. For this example, Raw (dd) is going to be8.
used, as it is supported by most commercial and open source methods for
analysis:

FTK Imager – selecting the image type

Enter the relevant case information and select Next. This can be skipped. 9.
Select the image destination:10.

FTK Imager – saving your image file

Windows Phone Forensics Chapter 12

[332]

Select Finish and then select Start. It is recommended that you verify images11.
after they are created.

Once complete, your results will be displayed. We will cover analyzing the SD card data in
the following sections.

Key artifacts for examination
In this section, we are going to introduce you to the location of some of the most common
Windows Phone forensic artifacts, including contacts, SMS, and call and internet history.

Extracting contacts and SMS
All the contacts and incoming and outgoing short messages (SMS) in Windows Phone 7–10
are stored in the file named store.vol, which is present under the \Application
Data\Microsoft\Outlook\Stores\DeviceStore (Windows 7) and
Users\WPCOMMSERVICES\APPDATA\Local\Unistore (Windows 8-10) directories. An
example of a Windows 10 store.vol file is shown in the following screenshot:

The store.vol file in a Windows Phone

Windows Phone Forensics Chapter 12

[333]

Extracting call history
Call history data can currently be extracted from the Phone file. It's important to note that
the file doesn't have an extension and is located at \Users\WPCOMMSERVICES\APPDATA\
Local\UserData\. Here is an example of a Windows 10 Phone file:

The Phone file in a Windows Phone

Extracting internet history
Internet history can be extracted from the WebCacheV01.dat located
at \Users\DefApps\APPDATA\Local\Microsoft\Windows\WebCache\. Here is an
example of a Windows 10 WebCacheV01.dat file:

The WebCacheV01.dat file in a Windows Phone

Windows Phone Forensics Chapter 12

[334]

These files can be examined manually, for example, with a hex viewer, or can be parsed
automatically with mobile forensic tools. Here is the WebCacheV01.dat file parsed with
Magnet AXIOM:

WebCacheV01.dat file parsed with Magnet AXIOM

Summary
Acquiring data from Windows Phone devices is challenging, as they are secure, and
commercial forensic tools and open source methods do not provide easy solutions for
forensic examiners. Multiple tools, chip-off, JTAG, and the methods defined in this book are
some of the methods that provide access to user data on Windows Phone devices. Often,
you will find that Windows Phone devices require multiple extraction methods to acquire
accessible data. The biggest challenge is getting access to the device to acquire the data.
Once the data is available, all the extracted information can be analyzed by the examiner.

Again, the device must not contain a passcode. It must be unlocked (jailbroken or rooted) to
use non-commercial methods, and it may be modified by the examiner in order to extract
the data using the methods defined in this chapter. While some may challenge us and say
that these methods are not common in forensic practices, they must realize that these
methods may be the only way to obtain user data from Windows Phone devices.

13
Parsing Third-Party Application

Files
Third-party applications have taken the smartphone community by storm. Most
smartphone owners have more than one app on their device that they rely on to chat, game,
get directions, or share pictures. According to
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-

app-stores/, there are almost 4 million apps existing worldwide for the various
smartphones. Apple's App Store offers approximately 2.2 million apps, Google Play offers
2.8 million, Amazon offers 600,000, and Windows offers 670,000. This number is expected to
grow exponentially through 2018.

The goal of this chapter is to introduce you to the various applications seen on Android, iOS
devices, and Windows Phones. Each application will vary due to versions and devices, but
their underlying structures are similar. We will look at how the data is stored and why
preference files are important to your investigation.

We will cover the following topics in detail in this chapter:

Different third-party applications
How applications are stored on iOS devices
How applications are stored on Android devices
Windows Phone 8 application storage
How to use both commercial and open source solutions to parse application data

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

Parsing Third-Party Application Files Chapter 13

[336]

Third-party application overview
Third-party applications are an integral part of mobile device investigations; often, the key
artifacts seem to exist within an application. This requires the examiner to understand
where application data is stored on the device, how application data is saved for that
platform, and which tool best helps uncover the evidence. Manual parsing is often a key
factor when examining third-party applications on any smartphone. While some
commercial tools, such as Magnet IEF, are known for application parsing support, no tool is
perfect and it's virtually impossible for tools to keep up with the frequent updates that are
released for each application. Most often, you'll find that the commercial tools available
parse the most popular applications on the market. For example, when Facebook purchased
WhatsApp, Cellebrite, IEF, and Oxygen Forensics started supporting this application.
Facebook is extremely popular, but data isn't always extracted or parsed, due to security
features that are built into the app—this is where all apps differ. Our best advice is to test,
test, and test! You can download an app, populate data, and examine the results to see how
your view of the evidence compares to your actual evidence. This practice will enable you
to understand how updates change the artifacts, how evidence locations change, and how
to manually extract artifacts that your tools are missing. Additionally, reverse-engineering
an app and analyzing its code will help you to identify where the data is stored and how it
is stored.

Most applications do not require a data plan for use; they can fully function via a Wi-Fi
network, which means that apps can still function if a person travels to a region in which
their device would not usually work. For example, when I travel, I rely on Skype, Viber,
and WhatsApp to call and text family and friends. To use these apps, all that is required is
that my smartphone is connected to Wi-Fi.

Parsing Third-Party Application Files Chapter 13

[337]

We have already addressed some third-party application extraction and analysis tips in this
book. In addition to this, we discussed the files that need to be examined to understand and
analyze application data in Chapter 5, iOS Data Analysis and Recovery, Chapter 10, Android
Data Analysis and Recovery, Chapter 11, Android App Analysis, Malware, and Reverse
Engineering, and Chapter 12, Windows Phone Forensics. This chapter will dive deeper into
the applications and relevant files, and will prepare the examiner for the analysis of these
artifacts. Each application has a purpose. Most tools provide support for the most popular
application in each category. The rest is up to you. A quick look at the applications
presented by Oxygen Detective is shown in the following screenshot. As expected, these are
not all of the applications that are present on the device; rather, these are just the ones that
the tool knows how to parse:

Example of applications parsed by Oxygen

Chat applications
Chat applications are among the most common applications on the market. These
applications provide users with the ability to chat outside the standard SMS services offered
by the network service provider and device, and are sometimes more secure. By secure, we
mean that the apps may offer encryption, private profiles, private group chats, and more.
Additionally, these apps enable the user to message others without the need for a data plan,
as Wi-Fi provides all the access that they need. Tango, Facebook Messenger, WhatsApp,
Skype, and Snapchat are some of the more popular applications.

Parsing Third-Party Application Files Chapter 13

[338]

Parsing artifacts from chat applications is not always simple. Often, multiple tools and
methods will be required to extract all of the data within them. Commercial tools may only
parse a portion of the data, forcing the examiner to learn how to examine and recover all
data or miss evidence. Oxygen Detective is being used to parse chat messages from Tango
on an Android device in the following screenshot. Note that the message does not show the
image in the table. However, this image can be pieced back into the message, as shown in the
following screenshot, to provide the total picture of what was being shared in a
conversation. In this example, the graphic was located and is shown with an arrow pointing
to the message to which it belongs. This was a manual process and was not performed by
the tool:

An example of piecing application chat logs back together

Parsing Third-Party Application Files Chapter 13

[339]

GPS applications
Most users branch out from their standard phone apps for GPS support. This includes
getting directions to locations and obtaining maps for areas of interest. Common GPS
applications include Waze and Google Maps. Waze goes beyond just providing directions,
as it also alerts the user to road hazards, traffic, and police officers that are along the path
they are driving:

The Waze application

Other applications that store location information include Twitter, Instagram, Facebook,
and Foursquare. These applications enable a user to alert friends and followers to their
location when they create a post or share an image or video. All of these transactions are
tracked within the app. Understanding this is key to uncovering additional artifacts that are
not reported by your forensic tool.

Parsing Third-Party Application Files Chapter 13

[340]

When examining location information from GPS applications, it is best to assume that you
need to manually examine the databases and preference files that are associated with that
application. We recommend using your forensic tool to triage the data on the device and
then dive deeply into the artifacts, which will be discussed later in this chapter. An example
of Waze being parsed by UFED Physical Analyzer is in the following screenshot. Here, we
can see that the user had 5 favorite locations, 74 mapped locations, and 70 recent directions.
All of this information must be manually verified if it pertains to the investigation. This is
because the tool cannot determine whether the user typed the address, whether it was
suggested, or whether the user even traveled to that location. Proper skills are required by
the examiner to tie a user to a specific location, and this takes more than a forensic tool.

The Waze application in UFED physical analyzer

Secure applications
If data is secure and self-destructing, did it ever even exist? Ignore the claims of data
retention and hunt for that data, as these apps often make claims that are simply untrue.
Although applications are designed with security in mind, updates are released quickly and
quality assurance checks may not be strong enough to catch everything. On occasion, you
will find an app with an encrypted or nonexistent database, but the file includes a journal,
write-ahead logs, or shared memory files that contain portions of chats that were supposed
to be encrypted. In addition to this, the user can save media files that are shared, take
screenshots of conversations, and do much more. Often, you may uncover the images,
audio, and video files that were shared and supposed to be encrypted.

Parsing Third-Party Application Files Chapter 13

[341]

Some popular secure messaging applications include Telegram, Wickr, and Signal. Some of
these are encrypted, where nothing is recoverable. However, this all depends on the device,
the OS running on the smartphone, and the version of the app. The security level of these
apps is publicly advertised, but again, take this with a grain of salt. You should always
assume that there could be a vulnerability in the app that may provide you with access
forensically. Dig for this evidence!

Information on how secure some of these apps are can be found
at: https://www.eff.org/secure-messaging-scorecard.

Financial applications
Applications that utilize financial information, such as credit card information and personal
banking, are required to be encrypted and secure. iOS devices will not acquire these apps
without an Apple ID and password. Even if you have the user's Apple ID and password,
the data extracted should still be encrypted. Some examples of financial applications
include Google Wallet, Windows Phone Wallet, PayPal, Apple Pay, and In-App Purchases.
When you examine a device, you may see that the app was installed with the associated
application metadata, but account information and transactions will not be accessible.

Social networking applications
Commercial support for social networking applications is strong as they are the most
popular apps downloaded from app stores. These applications allow users to make posts,
share locations, chat publicly and privately, and essentially catalogue their lives. Common
social networking applications include Facebook, Twitter, and Instagram. Often, users will
enable one app, such as Instagram, to have access to Facebook and Twitter so that posting is
seamless. Thus, when examining devices, the user may find multiple copies of the same file
or conversation due to the sharing that takes place between apps.

When examining these apps with commercial tools, it is common for chats and contacts to
be parsed, meaning that other data may be overlooked. Again, this means the examiner
must look at the data dump to ensure that nothing is missed. As an example, we are going
to take a look at Twitter. This application stores a lot of information that may require more
than one tool to parse. Additionally, the user may have to manually examine the database
files to ensure that all artifacts have been recovered.

https://www.eff.org/secure-messaging-scorecard

Parsing Third-Party Application Files Chapter 13

[342]

Let's take a look at what the tool was able to extract. As stated several times in this book,
start with what the tool is telling you is installed, and then formulate keywords and
methods to dig deep into the file system. We can see the user account information for
Twitter, as well as the file path where this data is being extracted, in the following
screenshot:

Twitter as parsed by Oxygen Detective

The next logical step is to view what the tool can tell you about the application and how it
was used. Oxygen Detective provided the following information for Twitter account usage.
Note that both public tweets and private messages (DMs) are recovered:

Parsing Third-Party Application Files Chapter 13

[343]

Twitter usage by Oxygen Detective

After examining what was parsed by the tool, the database files should be examined to
ensure nothing was missed. This is not always simple, as each account and function may
have a unique database. By function, we mean that contacts may be stored in one database
while chats and account information are stored in another. Once you become more familiar
with common applications, you will know where to look first. At the time of writing this
book, the following databases were the most relevant:

Global.db: This database contains account information, such as the username
<User-id>.db: This database contains notifications, messages, contacts, and
statuses

Parsing Third-Party Application Files Chapter 13

[344]

In the following screenshot, we can see all of the databases that are associated with Twitter.
Again, start with what you know and dig deeper:

Twitter databases containing user activity

Each database may contain unique data that can be parsed for additional artifacts. These
applications also contain unique user_id values, which can be used as keywords to search
for other devices with traces of communication within an investigation. In the following
example, we can see user_id values, the creation date (UNIX timestamp), and the data,
which is the result of private messaging on Twitter:

Twitter private messaging artifacts

Parsing Third-Party Application Files Chapter 13

[345]

Custom queries can be written to parse Twitter databases of interest. A good example of
how to do this is shown as follows. This query is specific to parsing Twitter contacts:

SELECT
_id AS "Index", user_id, username,
name,
datetime (profile_created/1000,'UNIXEPOCH','localtime') AS "Profile
Created",
description AS "Twitter Description", web_url,
location, followers,
friends AS "Following",
users.statuses AS "Number of Tweets",
datetime (profile_created/1000,'UNIXEPOCH','localtime'), image_url,
datetime (updated/1000,'UNIXEPOCH','localtime') AS "Profile Updated",
datetime (friendship_time/1000,'UNIXEPOCH','localtime') AS "Became Friends"
FROM users

Encoding versus encryption
The terms encoding and encryption are used so frequently when discussing applications
and smartphone data that they are often confused. Encoding is essentially the process of
obfuscating a message or piece of information to appear as raw code. In some cases, the
goal of encoding is to make the data unrecognizable to the computer or the user. In reality,
the primary goal of encoding is to transform the input into a different format using a
publicly available scheme. In other words, anyone can easily decode an encoded value.
Encryption, however, transforms the data using a key in order to keep its content
confidential. So, encrypted text can only be reversed if you have the key. Most applications
claim that they encrypt data or that the data is never saved to disk. While this is true for
some, most are simply encoded. Encoding options can vary, but the most common option
for smartphone data is Base64. Messaging apps often rely on Base64 encoding to make the
data appear to be hidden or safe. A common artifact of Base64 is the padding of the data
with an = when the encoded bytes are not divisible by three.

Parsing Third-Party Application Files Chapter 13

[346]

Until a little over a year ago, Oxygen Forensics and Autopsy were two of the few tools that
support the decoding of Base64 payloads from applications derived from smartphones. For
these tools to parse the data, they must support the application containing the encoding.
Currently, MSAB, UFED Physical Analyzer, and Magnet IEF also provide Base64 decoding
support.

An example of Base64-encoded messages is shown in the following screenshot. This data is
from the Tango chat application:

Base64-encoded Tango messages

Encryption is a bit more difficult as the app itself may not even provide access to the
encrypted data. For example, you may find that the database directory or the cells
containing the encrypted data are simply empty. Occasionally, you will have access to the
encrypted blobs within the databases, but this data cannot always be decrypted. Again,
when you face encrypted data, look elsewhere. Have you examined the journal and write-
ahead logs? Have you examined the cache and media directories? Have you examined the
SD card? These are common questions you will often have to ask yourself to ensure you are
not relying on your forensic tools too much and that you are covering your bases to ensure
nothing is overlooked. As we've explained, start with what you know. We know that the
cache and database directories store user data, so this is a great place to start your manual
examination, as you can see in the following screenshot:

Parsing Third-Party Application Files Chapter 13

[347]

Data storage locations for applications

Parsing Third-Party Application Files Chapter 13

[348]

Application data storage
Almost all applications rely on SQLite for data storage. These databases can be stored
internally on the device or on the SD card for relevant phones. When SQLite is used,
temporary memory files are commonly associated to each database to make SQLite more
efficient. These files, which were previously mentioned, are write-ahead logs (WAL) and
shared memory files (SHM). These files may contain data that is not present in the SQLite
database. Few tools will parse this information, but the ones that are offered by Sanderson
Forensics will get you started. Go to
http://sandersonforensics.com/forum/content.php?261-Timelining-events-in-a-WAL-

based-SQLite-DB for more information. We can see several WAL and SHM files associated
with various WhatsApp database files in the following screenshot:

An SHM file and WAL example

In addition to SQLite databases, other devices rely on Plist, XML, JSON, and DAT files for
application data storage, account data storage, purchase information, and user preferences.
These files will be discussed in the Android, iOS, and Windows Phone sections of this
chapter.

http://sandersonforensics.com/forum/content.php?261-Timelining-events-in-a-WAL-based-SQLite-DB
http://sandersonforensics.com/forum/content.php?261-Timelining-events-in-a-WAL-based-SQLite-DB

Parsing Third-Party Application Files Chapter 13

[349]

iOS applications
Apple relies on SQLite and Plist as common locations for application data storage. On
occasion, JSON files will be used for application data. Examining applications recovered
from an iOS device can be overwhelming. We suggest you start with what you know and
what your tool is telling you. Examine the Installed Applications listed by your tool of
choice. From here, go directly to the applications directory and ensure that nothing is being
overlooked. When a user deletes an app, the databases often remain and the link to the
installed application is simply broken. Examining all areas of the iOS device will prevent
the examiner from missing data:

Installed applications on an iPhone

Parsing Third-Party Application Files Chapter 13

[350]

After examining the installed applications, search the Library and Documents directories
for any relevant Plist files that may contain application artifacts. Finally, examine the Media
directory on the iPhone as well as the one associated with the app to recover additional
artifacts, such as shared photos, videos, audio files, and profile pictures. In the following
screenshot, we are examining the Media directory associated to the WhatsApp application:

Application data on an iPhone

Android applications
Android devices rely heavily on SQLite for application storage. The preference files for each
application are often in the DAT or XML file formats. More so than an iOS device,
examining applications on an Android may be one of the most tedious tasks. This is due to
the various locations that data may be stored in. The best place to start is with a tool that
will provide a listing of what is installed on the device. Next, go to the subdirectories off the
/Root directory. Remember, these applications may possess unique names and may be
difficult to locate.

Parsing Third-Party Application Files Chapter 13

[351]

You may have to research the application to gain a better understanding of the filenames
that are associated with each of them. The following screenshot is an example of application
directories on an Android device:

Application data on an Android device

Each of these application directories will contain a lot of data to examine. We recommend
starting with the Databases and Cache directories and then expanding your analysis to
other locations on the device. The next locations to examine include the Media and Cache
partitions. If the data appears to be missing or is claimed to have been deleted, do not forget
to examine the Downloads directory on the device and SD card.

Parsing Third-Party Application Files Chapter 13

[352]

Application data can exist in several locations in the Media directories. Using a tool, such as
UFED Physical Analyzer, which provides keyword-searching capabilities spanning beyond
parsed items, will really help in locating artifacts pertaining to specific applications. We are
looking at the large amount of data stored in the Media directory on an Android device in
the following screenshot. This data is unique from what is stored in the application
directories which were discussed previously. Each location needs to be thoroughly
examined to ensure nothing is missed. It is important that you take what you learned in
previous chapters to analyze Android application data:

Unique application data in the Media directory

Parsing Third-Party Application Files Chapter 13

[353]

Windows Phone applications
Applications found on Windows Phones are no different to those found on iOS and
Android devices. SQLite is the most common format used for data storage. However, not all
devices allow for SQLite files to be stored internally on the phone. For these devices, all
application data will be found on the SD card. Some may view this as lucky because it saves
us from having to examine several locations on the device, but the SD card and the
applications themselves may be encrypted.

Where possible, it is best to remove the SD card and acquire it using a forensic tool. When
this is not possible, the next best method would be to try to acquire the SD card through the
phone using a forensic tool. Again, this will often result in missed data. As a final effort, live
analysis can be completed by mounting the device and using Windows Explorer to view the
applications stored on the device and SD card, as discussed in Chapter 12, Windows Phone
Forensics.

Forensic methods used to extract third-party
application data
Almost all commercial tools will attempt to support the extraction of third-party
applications. We recommend that you test your tools thoroughly and often, if you rely on
tool output for your investigative results. This is because the apps are updated so frequently
that it is nearly impossible for the tools not to miss something. You must learn about the
applications, how they work, and how the devices store data for each app. We strongly
recommend that you use your tool to triage the case and then dive into the data to manually
extract anything that the tools miss. Make sure that you only include factual data in your
forensic report and not everything that the tools parse, as the tools cannot decipher the
difference between device and human creation. Only a trained examiner can do this with
confidence.

Parsing Third-Party Application Files Chapter 13

[354]

Commercial tools
As you have seen in this book, there are many tools that can handle the job of smartphone
forensics. However, there are a few that really shine when it comes to parsing application
data. Magnet IEF, Oxygen Detective, Forensics Suite, and UFED Physical Analyzer are a
few that do a good job of recovering data from the application categories discussed in this
chapter. We will take a quick look at how to leverage each of these tools to parse application
data. Keep in mind that these tools will not find every application and will not parse all
data for applications.

Oxygen Detective
Oxygen Detective can be used to examine application data. For this example, we are
assuming the acquisition is complete and we are simply attempting to analyze the data.
Note that Oxygen is capable of acquiring and analyzing smartphones. In this example, we
acquired the device with Cellebrite UFED and analyzed it with Oxygen. To load a data
dump of a device and examine its application artifacts, follow these steps:

Launch Oxygen Detective.1.
Select the Import File option and choose your image. Multiple image formats are2.
supported for ingestion into Oxygen.
After parsing is complete, start examining the parsed applications:3.

Parsing Third-Party Application Files Chapter 13

[355]

The Oxygen Detective application view

Next, start examining applications of interest by clicking on the application and4.
examining all of the associated files.

Parsing Third-Party Application Files Chapter 13

[356]

Once you select the application, you will be presented with the data that was5.
parsed and the full file path from where the data was extracted. Use this path to
manually verify the findings. We are looking at the Pinterest application in the
following screenshot. Note how the container, file, and table of interest are
provided and hyperlinked for the user. The tool is even encouraging you to dig
deeper and verify the findings:

Oxygen Detective Pinterest example

Oxygen Detective has built-in features for keyword searching, bookmarking, and
reporting. In addition, the SQLite Database and Plist Viewer will provide you
with a method for examining relevant application data

Report all account information, chats, messages, locations, and any other data of6.
interest, as this provides relevance to your investigation.

Parsing Third-Party Application Files Chapter 13

[357]

Magnet IEF
Magnet IEF has been known as one of the leaders in internet and application parsing for
digital media. They are just as strong with mobile devices. Again, one tool cannot do the
job, but IEF proves to be the strongest and parses the most applications from Android, iOS,
and Windows Phones. The downside to this tool is that we are forced to rely on the
reported artifacts, as the file system is not normalized and provided for manual
examination. To use IEF to examine application artifacts, follow these steps:

Launch IEF and then select MOBILE (note that if MOBILE is grayed out, you1.
need to obtain a license that provides mobile support from Magnet Forensics):

Magnet IEF

Select IMAGES and navigate to your image file. More than one image can be2.
loaded and parsed at the same time.

Parsing Third-Party Application Files Chapter 13

[358]

Select NEXT and determine what you want to parse. We recommend selecting3.
CHECK ALL:

Magnet IEF supported artifacts

Browse to the location where you wish to save the case file and select Find4.
Evidence.

Parsing Third-Party Application Files Chapter 13

[359]

Once complete, the IEF Report Viewer will be displayed, as follows:5.

Application Artifacts in Magnet IEF

The first step in examination is to review what has been parsed by IEF. In the preceding
screenshot, we can see that Telegram was parsed. Start your examination in the most
relevant location. For example, if you are looking for Telegram Chats, go right to that
location and start examining the artifacts. Note that Messages and Chats are pulled into
two different categories. This is common when private messaging is used. All relevant
application containers should be examined. Additionally, IEF provides the full file path
from which the data was recovered. Use another tool to navigate to this file for verification
and manual examination.

IEF also provides logical keyword search (it will search what it can parse and nothing else),
bookmarking, and reporting. Make sure that you only report factual application artifacts
and incorporate this into your final forensic report.

Parsing Third-Party Application Files Chapter 13

[360]

UFED Physical Analyzer
Physical Analyzer is one of the most well-known mobile forensic tools on the market. This
tool is one of the best platforms to manually conduct an examination in addition to
leveraging the data parsed by the tool. For application analysis, Physical Analyzer is good
at parsing chats and contacts for each supported application. For data that is not parsed,
Physical Analyzer provides an analytical platform that enables the user to browse the file
system to uncover additional artifacts. Keyword searching is robust in this tool and is
capable of searching raw Hex as well as parsed data. In addition, a SQLite viewer is
included.

To conduct a forensic examination of application data in Physical Analyzer, follow these
steps to get started:

Launch Physical Analyzer by double-clicking on the UFED shortcut image file or1.
by double-clicking the tool icon.
Load the image file and wait until parsing completes.2.
Examine the parsed artifacts, as shown in the following screenshot. For this3.
example, we are examining Tango. Physical Analyzer recovered Tango data in
Chats, Contacts, Installed Applications, Passwords, and User Accounts:

Tango as parsed by Physical Analyzer

Parsing Third-Party Application Files Chapter 13

[361]

We recommend examining what is parsed and referring to the hyperlink of where the data
is being extracted. Navigate to this path and then examine the entire application directory.

To find the application directory, leverage built-in keyword searching capabilities to aid in
the investigation. Remember, you may have to conduct research to determine the file names
associated to the app if this is not apparent. Tango, for example, does not use the term
Tango in the file paths or filenames. The directory is .sgiggle and the primary database is
tc.db. This makes our job harder because we can't simply search for Tango and get
accurate results.

Open source tools
For those on a budget, it is possible to examine application data from smartphones using
open source solutions and cheap tools. These solutions are more difficult to use, and they
are often not the answer for those new to forensics who need the assistance of a tool in data
extraction and analysis. Examining application data is tedious, and if you do not know
where to look, it's likely you will need to spend some money to get a head start. Tools, such
as Andriller, can be purchased for around $500. While this is not free, it's also not $10,000,
which is what some of the other commercial tools cost. In the following section, we will
cover a few of our favorite tools that are useful in parsing application data from
smartphones.

Autopsy
Autopsy is one of the best tools for examining Android and Windows Phones.
Unfortunately, iOS parsing is not provided in Autopsy. Autopsy can be downloaded from
http://sleuthkit.org/autopsy/. When using Autopsy, the Android Analyzer module will
parse some application data from the device. This module is unique in that it is currently
the only tool that parses WordsWithFriends, a gaming application, and was the first tool,
other than Oxygen Forensics, to provide Base64 decoding support for Tango chat messages.
Some say that Autopsy is the free solution for those who cannot afford Physical Analyzer.

http://sleuthkit.org/autopsy/

Parsing Third-Party Application Files Chapter 13

[362]

To use Autopsy, download the software and install it on a Windows machine and follow
these instructions. Make sure that you are always using the latest version:

Launch Autopsy.1.
Create a new case:2.

Autopsy case creation

Select Next and then click on Finish.3.
Navigate to your image file and select Next.4.
Select the modules that you wish to run. Keyword Search and Android Analyzer5.
will be the most fruitful for an Android device. These modules can also be run
after the image is ingested. The Keyword Search will prove to be just as robust as
Physical Analyzer:

Parsing Third-Party Application Files Chapter 13

[363]

Autopsy module selection

Ingest Modules are tools built into Autopsy that can be run when the case has started or at
any point afterwards. The default modules in this version of Autopsy are as follows:

Recent Activity: This extracts recent user activity such as web browsing, recently
used documents, and installed programs.
Hash Lookup: This identifies known and notable files using supplied hash
databases, such as a standard NSRL database. It also allows importing custom
hash databases.
File Type Identification: This matches file types based on binary signatures.
Archive Extractor: This extracts archive files (.zip, .rar, .arj, .7z, .gzip,
.bzip2, .tar). It automatically extracts these file types and puts their contents
into the directory tree.
EXIF Parser: This ingests JPEG files and retrieves their EXIF metadata.
Keyword Search: This performs file indexing and periodic search using
keywords and regular expressions in lists. It allows the loading of custom
keywords/lists.
Email Parser: This module detects and parses mbox and pst/ost files and
populates e-mail artifacts in the blackboard.

Parsing Third-Party Application Files Chapter 13

[364]

Extension Mismatch Detector: These are flag files that have a non-standard
extension based on their file types.
E01 Verifier: This validates the integrity of E01 files.
Android Analyzer: This extracts Android system and third-party app data.
Interesting Files Identifier: This identifies interesting items, as defined.

Autopsy provides access to file system data faster than any commercial or open source tool
available. Knowing where to go from there is the hard part. So, again, start with anything
that is in the extracted content and then dive into the file system to examine the files
discussed in this book and any relevant application data, as shown in the following
screenshot:

Autopsy results

Parsing Third-Party Application Files Chapter 13

[365]

Once you have identified applications of interest, start with what is parsed and then
examine the relevant database, cache, and preference files. At the time of writing, Autopsy
does not have an SQLite viewer available. All databases must be exported and examined in
a SQLite viewer. We like SQLite Forensic Browser, which has been discussed in this book.

Autopsy was able to parse Tango chat messages and contacts in a similar way to Physical
Analyzer, IEF, and Oxygen. The following screenshot shows the results of the decoded
messages:

Tango decoded by Autopsy

Other methods of extracting application data
One of the easiest ways to parse application data is to create custom SQLite queries and
Python scripts to parse data of interest. We have discussed several suggestions and
examples of queries and scripts throughout this book. Python is one of the best solutions
because it is free and we have full access to its libraries. One thing to keep in mind is that
our scripts have to be updated frequently to keep up with application updates. Also, make
sure your encoding schemas are correct to prevent application artifacts from being missed
or not interpreted correctly.

In addition to Python scripts, free parsers that support application extraction already exist.
WhatsApp Extract is a free tool for both Android and iOS that will extract WhatsApp
application data from devices. Often, this free tool will extract more data than the
commercial solutions, depending on the permissions the user allocated during installation.
Others, such as Mari DeGrazia (http:/ ​/ ​az4n6. ​blogspot. ​in/ ​p/​downloads. ​html) and Adrian
Leong (https://github.com/cheeky4n6monkey/4n6-scripts), have developed scripts to
parse applications, recover deleted data from SQLite free pages, decode Base64, and more.
We recommend using what is already available before developing your own.

http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
http://az4n6.blogspot.in/p/downloads.html
https://github.com/cheeky4n6monkey/4n6-scripts

Parsing Third-Party Application Files Chapter 13

[366]

Summary
Many apps are not what they claim to be. Never trust what you read about apps, as quality
assurance testing across apps is not consistent, and we have determined several
vulnerabilities and security flaws over the years that provide us with methods of piecing
application data back together. In addition, application updates will change the way we
need to look at the data found. Understanding each smartphone and how it stores
application data is the first step towards successfully examining applications on
smartphones. Knowing that updates may change data locations, encoding, and encryption,
as well as how your tool functions, is one of the hardest concepts for examiners to grasp. It
is your job to learn the capabilities of the application to uncover the most data from the
mobile device.

Understanding how an application works is hard enough without having to consider how
to extract artifacts. As you have read in this book, there are many ways to parse data from
smartphones. One tool is never enough, and the reality is that mobile forensics can be
expensive. We hope that we have provided you with a practical guide that teaches you how
to acquire and analyze artifacts that are recovered from smartphones. Take what you've
learned and apply it immediately to your methods to conduct mobile forensics or use it to
make you more prepared in your next job. Remember that practice, testing, and training
will make you better at your job and will help you perfect the art of mobile forensics.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Mobile Forensics
Soufiane Tahiri

ISBN: 978-1-78528-781-7

Understand the mobile forensics process model and get guidelines on mobile
device forensics
Acquire in-depth knowledge about smartphone acquisition and acquisition
methods
Gain a solid understanding of the architecture of operating systems, file formats,
and mobile phone internal memory
Explore the topics of of mobile security, data leak, and evidence recovery
Dive into advanced topics such as GPS analysis, file carving, encryption,
encoding, unpacking, and decompiling mobile application processes

https://www.packtpub.com/networking-and-servers/mastering-mobile-forensics

Other Books You May Enjoy

[368]

Mobile Forensics Cookbook
Igor Mikhaylov

ISBN: 978-1-78528-205-8

Retrieve mobile data using modern forensic tools
Work with Oxygen Forensics for Android devices acquisition
Perform a deep dive analysis of iOS, Android, Windows, and BlackBerry Phone
file systems
Understand the importance of cloud in mobile forensics and extract data from the
cloud using different tools
Learn the application of SQLite and Plists Forensics and parse data with digital
forensics tools
Perform forensic investigation on iOS, Android, Windows, and BlackBerry
mobile devices
Extract data both from working and damaged mobile devices using JTAG and
Chip-off Techniques

https://www.packtpub.com/networking-and-servers/mobile-forensics-cookbook

Other Books You May Enjoy

[369]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
ADB backup extraction
 dumpsys extraction 251, 252, 253
ADB pull data extraction 240, 243
Address Space Layout Randomization (ASLR) 57
AFLogical 254
AFLogical OSE 1.5.2
 URL, for downloading 254
analysis 26
Andriller 361
Android apps
 about 350
 analyzing 291
 Facebook Android app analysis 292, 293
 Gmail Android app analysis 296
 Google Chrome Android app analysis 297, 299
 Skype Android app analysis 294
 WhatsApp Android app analysis 294
Android Backup Extractor
 about 250
 reference link 250
Android Debug Bridge (ADB)
 about 211
 USB debugging 212
Android device, accessing with adb
 about 214
 basic Linux commands 215
 connected devices, detecting 214
 local adb server, killing 214
 shell, accessing 214
Android device, connecting to workstation
 device cable, identifying 209
 device drivers, installing 209
Android device
 Stay awake setting, enabling 218
 accessing, adb used 214

 connecting, to workstation 208
 file systems, viewing 194
 handling 218
 partitioning 259
 rooting 233, 234
 screen timeout, increasing 218
 USB debugging, enabling 218
Android file hierarchy 191
Android file system 194
Android image
 analyzing 267
Android malware
 about 304, 307
 causes 307
 identifying 308, 310
 references 304
 URL 307, 308
Android model
 about 181
 Android Runtime (ART) 185
 Dalvik virtual machine 184
 Hardware Abstraction Layer 183
 Java API framework layer 186
 libraries 184
 Linux kernel layer 183
 reference 181
 system apps layer 186
Android SDK
 installation 202
 reference 202
Android security
 about 186, 189
 application sandbox 189
 Full Disk Encryption (FDE) 190
 kernel 187
 permission model 188
 secure inter-process communication 189

[371]

 Security-Enhanced Linux (SELinux) 190
 Trusted Execution Environment (TEE) 191
Android Virtual Device (AVD) 204, 208
Android
 data recovery 273
 evolution 180
 file systems 197
 forensic environment, setting up 201
APFS filesystem
 features 50, 51
 structure 51, 52
App Store 58, 59
Apple File System (APFS) 48
Apple Watch hardware 46, 47
Apple Watch models 45
application data storage
 about 348
 Android applications 350
 iOS applications 349
 Windows Phone applications 353
Autopsy
 about 267, 361
 image, adding to 267, 269, 270
 reference 361
 used, for analyzing image 271, 272

B
b-tree layout
 reference 144
backups
 creating, with iTunes 92
Base64 345
Belkasoft Acquisition Tool
 using, with logical acquisition 73
Belkasoft Evidence Center
 features 166
 used, for iTunes backup parsing and analysis

167, 172
 working with 166
BlackLight
 reference 103
Boot ROM 63

C
call history
 extracting 333
Cellebrite UFED Physical Analyzer
 features 147
 used, for logical acquisition and analysis 148,

152, 155
 working with 147
chat application 337
chip-off
 about 265
 forensic steps 264
ClockworkMod 234
Code Signing 56
commercial forensic tool acquisition methods 322,

324

commercial tools
 about 354
 Magnet IEF 357
 Oxygen Detective 354
 UFED Physical Analyzer 360
connected device
 accessing 210
contacts and SMS
 extracting 332
contacts
 recovering, Google account used 287, 288
Cydia Impact
 reference 82

D
Dalvik virtual machine (DVM) 299
data acquisition 321
data acquisition methods
 about 24
 logical acquisition 24
 manual acquisition 25
 physical acquisition 24
data execution prevention (DEP) 58
data extraction techniques
 about 239
 logical data extraction 240
 manual data extraction 240
 physical data extraction 257

[372]

data extraction
 commercial tool usage, avoiding 325, 327
 SD card data extraction methods 328, 331
data recovery 272
DCode 114
deleted data
 recovering, from external SD card 273, 274,

275, 276, 277, 279
 recovering, from internal memory 280
deleted files
 recovering, by parsing SQLite files 280, 281
Device Firmware Upgrade (DFU) mode
 about 67
 reference 69
device locking 218
differential backup 94
digital forensics 8
Discretionary Access Control (DAC) 190
disk layout 52, 53
DiskDigger 287
dot commands 116

E
Elcomsoft iOS Forensic Toolkit
 about 70
 using, with filesystem acquisition 83
 using, with physical acquisition 84
Elcomsoft Phone Breaker 105, 109
Embedded Multimedia Card (eMMC) 190
encoding
 versus encryption 345, 346
encrypted backup
 about 105
 Elcomsoft Phone Breaker 105
examination 26
Exchangeable Image File Format (EXIF)
 reference 139
Extended File System (EXT) 197
external SD card
 deleted data, recovering from 273, 274, 275,

276, 277, 279
external storage 241

F
Facebook Android app analysis 292, 293
features, Windows Phone OS
 additional features 314
 cortana 314
 geofence and advanced location settings 314
 wallet 314
file system acquisition
 about 81
 jailbreaking 82
file-based encryption 190
file-carving techniques
 used, for recovering files 283, 284, 285, 286
filesystem acquisition
 Elcomsoft iOS Forensic Toolkit, using 83
financial applications 341
Find My Friends service 107
Find My iPhone service 107
Flash Friendly File System (F2FS) 199
forensic environment
 setting, up for Android 201
forensic methods
 used, for extracting third-party application data

353

forensic practices
 about 29
 evidence and changes, documenting 30
 evidence, preserving 29
 evidence, securing 29
 reporting 30
forensically sound 9
Full Disk Encryption (FDE) 190, 265

G
Globally Unique Identifier (GUID) 95
Gmail Android app analysis 296
Google account
 used, for recovering contacts 287, 288
Google Chrome Android app analysis 297, 299
GPS applications 339, 340
graphical user interface (GUI) 115

[373]

H
hardware model
 identifying 33, 34, 35, 36
HFS Plus filesystem
 reference 48
HFS Plus volume
 about 49
 structure 50
Hierarchical File System (HFS) 48

I
iBackup Viewer
 download link 99
iBSS
 reference 67
iCloud backups
 extracting 109
 working with 107
iExplorer
 about 36
 reference 101
image
 adding, to Autopsy 267, 269, 270
 analyzing, Autopsy used 271, 272
imaging the device 257
initialization vector (IV) 105
Integrated Circuit Card Identifier (ICCID) 95
inter-process communication (IPC) 189
internal memory
 deleted data, recovering from 280
internal storage 241
International Mobile Equipment Identity (IMEI) 95
internet history
 extracting 333
iOS applications 349
iOS architecture
 about 54
 Cocoa Touch layer 54
 Core OS layer 54
 Core Services layer 54
 Media layer 54
iOS database files
 address book contacts 122
 address book images 124

 calendar events 128
 call history 126
 consolidated GPS cache 132
 notes 129
 photo metadata 131
 Safari bookmarks and cache 130
 Short Message Service (SMS) 127
 Voicemail 133
iOS devices
 operating modes 62
iOS security
 about 55
 Activation Lock 58
 Address Space Layout Randomization (ASLR)

57

 Code Signing 56
 data execution prevention (DEP) 58
 data protection 57
 data wipe 58
 encryption 57
 face ID 56
 passcodes 56
 privilege separation 57
 sandboxing 56
 stack-smashing protection 57
 touch ID 56
IP-BOX 3 70
iPad hardware 44
iPad models
 about 42, 43
 reference 42
iPad Pro
 reference 44
iPhone hardware 41, 42
iPhone models
 about 33
 features 37
 reference 33
iPhone operating system 53
iPhone releases
 features 38, 39
iThmb Converter
 reference 140
iTunes backup
 about 89

[374]

 creating 92
 structure 94
iTunes
 auto-syncing, disabling 90
 download link 68

J
jailbreaking 59
Java SE Development Kit (JDK)
 reference 202
Joint Test Action Group (JTAG)
 about 23, 262
 forensic steps 262
 reference link 262
journal 340

K
key artifacts, for examination
 about 332
 call history, extracting 333
 contacts and SMS, extracting 332
 internet history, extracting 333

L
libimobiledevice software library
 reference 34
libimobiledevice
 using, with logical acquisition 72
Linux epoch
 URL 293
lockdown files 70
logical acquisition
 about 71
 Belkasoft Acquisition Tool, using 73
 Magnet ACQUIRE, using 78
 with libimobiledevice 72
logical data extraction
 about 240
 ADB backup extraction 249, 250
 ADB pull data extraction 240
 content providers, using 253, 254, 255, 256
 social networking/IM chats, analyzing 248
 SQLite Browser, used for viewing data 243
Low Level Bootloader (LLB) 63

M
Mac absolute time 112, 113
Magnet ACQUIRE
 using, with logical acquisition 78
Magnet AXIOM
 about 156
 features 156
 logical acquisition and analysis 157, 166
 reference 164
 using, with logical acquisition 162
 working with 156
Magnet IEF 357
Mandatory Access Control (MAC) 190
manual data extraction 240
Mobile Device Management (MDM) 219
Mobile Equipment Identifier 95
mobile forensic tool leveling system
 about 20
 chip-off 23
 hex dump 22
 logical extraction 22
 manual extraction 22
 micro read 23
mobile forensics
 about 8, 9
 challenges 10
 need for 7
mobile operating systems
 Android 19
 iOS 20
 overview 19
 Windows Phone 20
mobile phone evidence extraction process
 about 12
 archiving phase 18
 device information, identifying 14
 document and reporting phase 17
 evidence intake phase 13
 goals examination 14
 identification phase 14
 isolation phase 16
 legal authority 14
 potential evidence, sources 15
 preparation phase 15

[375]

 presentation phase 18
 processing phase 16
 removable external data storage 15
 verification phase 16
mobile phones
 stored potential evidences 25

N
normal mode 62

O
Open Handset Alliance (OHA) 180
open source tools
 about 361
 application data extraction, methods 365
 Autopsy 361
operating modes, iOS devices 62
 about 62
 DFU mode 67
 forensic environment, setting up 70
 password protection 70
 potential bypasses 70
 recovery mode 64
out of band (OOB) 198
Oxygen Detective 354, 356
Oxygen Forensic Detective
 features 172
 used, for logical acquisition and analysis 173,

178

 working with 172
Oxygen Forensics SQLite Viewer 281

P
Password-Based Key Derivation Function 2

(PBKDF2) 105
permission model 188
Phoenix4.ipa
 download link 82
physical acquisition
 about 83
 Elcomsoft iOS Forensic Toolkit, using 84
physical data extraction
 about 257
 Android phone, imaging 257, 258, 259, 260

 chip-off 264, 265
 JTAG 262, 263, 264
 memory (SD) card, imaging 261, 262
plist
 about 133
 files 134
 HomeDomain plist files 135
 RootDomain plist files 136
 SystemPreferencesDomain plist files 137
 WirelessDomain plist files 137
practical mobile forensic approaches
 about 18
 data acquisition methods 24
 mobile forensic tool leveling system 20
 mobile operating systems 19
Property List Editor 133

Q
QuickTime Player 133

R
ramdisk 67
re-balling 264
read-only memory (ROM) 63
recovery loop 65
recovery mode
 about 64
 reference 65
redsn0w tool 66
redsn0w
 reference 66
reverse engineering Android apps
 about 299
 APK file, extracting from Android device 300,

302

 processing 302, 304
Robust File System (RFS) 199
root access
 adb shell 236
 gaining 232
rooting 232
rules of evidence
 admissible 28
 authentic 28

[376]

 believable 28
 complete 28
 reliable 28

S
sandboxing 56
Scalpel
 about 283
 reference 283
screen lock bypassing techniques
 about 219
 adb connection, checking 222
 adb, using 220
 Android Device Manager, using 225
 automated tools, using 223
 booting, in safe mode 228
 Forgot Password/Forgot Pattern option, using

227

 lock screen UI, crashing in Android 5.x 230
 modified recovery mode, checking 222
 other techniques 231
 passcode 220
 pattern lock 220
 PIN code 220
 recovery partition, flashing 222
 settings.db file, updating 221
 smudge attack 226
 USB debugging bypass, securing 229
secure applications 340
secure boot chain 62
secure USB debugging bypass
 adb keys, using 228
 in Android 4.4.2 229
security chambers
 Trusted Computing Base (TCB) 315
security model
 about 315
 app sandboxing 318
 capability-based model 316
 chambers 315
 Elevated Rights Chamber (ERC) 316
 encryption 316
 Least Privileged Chamber (LPC) 316
 Standard Rights Chamber (SRC) 316
Security-Enhanced Linux (SELinux)

 about 190
 reference 190
shared memory files (SHM) 340, 348
shared preferences 241
Short Message Service (SMS) 127
Skype Android app analysis 294
Sleuth Kit
 reference 267
social networking applications 341, 343
Software Development Kit (SDK) 201
SQLite Browser
 browser history, extracting 247
 call logs, extracting 245, 246
 device information, extracting 244
 reference link 241
 SMS/MMS, extracting 246, 247
 used, for viewing data 243
SQLite command-line client
 download link 115
SQLite databases
 about 115, 241
 accessing, commercial tools used 117
 connecting 115
 special commands 116
 standard SQL queries 117
SQLite Professional
 reference 115
SQLite Spy
 reference 115
SQLite
 references 115
stack-smashing protection 57
Statista
 reference 7

T
Test Access Ports (TAPs) 23, 231, 262
third-party application
 chat applications 337
 data, extracting with forensic methods 353
 financial applications 341
 GPS applications 339
 overview 336, 337
 secure applications 340
 social networking applications 341, 344

timestamps
 Apple Watch 141
 cookies 138
 deleted SQLite records, recovering 144
 downloaded applications 141
 important files 137
 iOS database files 121
 keyboard cache 139
 Mac absolute time 113
 photos 139
 property lists 133
 recordings 141
 reference 112
 SQLite databases 114
 thumbnails 140
 Unix timestamps 112
 wallpaper 140
 WebKit/Chrome time 113
TouchXperience 325
Trusted Execution Environment (TEE) 191
Tunes backup structure
 info.plist 95
 manifest.db 97, 98
 manifest.plist 96
 status.plist 96

U
UFED Physical Analyzer 360
Undark
 reference 145
unencrypted backups
 BlackLight 103
 extracting 99
 iBackup Viewer 99
 iExplorer 101
Unique Device Identifier (UDID) 94
unique user ID (UID) 189
Universal Forensic Extraction Device (UFED)
 about 147
 reference 147

Universally Unique Identifier (UUID) 96
Unix timestamps
 about 112
 reference 112

V
verification phase, mobile phone evidence

extraction process
 about 16
 extracted data, comparing to handset data 17
 hash values, using 17
 multiple tools, used for comparing results 17

W
WebKit/Chrome time 113
WhatsApp Android app analysis 294
Windows Mobile Device Manager (WMDM) 325
Windows Phone App and Phone Companion App

328

Windows Phone applications 353
Windows Phone Device Manager
 reference 325
Windows Phone filesystem
 about 318
 application data 318
 applications 318
 My Documents 318
 Windows 318
Windows Phone OS 312, 314, 315
Windows registry 320
WinHex 261
wiping
 reference 58
WP internals
 reference 321
write blocker 330
write-ahead logs (WAL) 340, 348

Y
Yet Another Flash File System 2 (YAFFS2) 198

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Mobile Forensics
	Why do we need mobile forensics?
	Mobile forensics
	Challenges in mobile forensics

	The mobile phone evidence extraction process
	The evidence intake phase
	The identification phase
	The legal authority
	The goals of the examination
	The make, model, and identifying information for the device
	Removable and external data storage
	Other sources of potential evidence

	The preparation phase
	The isolation phase
	The processing phase
	The verification phase
	Comparing extracted data to the handset data
	Using multiple tools and comparing the results
	Using hash values

	The documenting and reporting phase
	The presentation phase
	The archiving phase

	Practical mobile forensic approaches
	Overview of mobile operating systems
	Android
	iOS
	Windows Phone

	Mobile forensic tool leveling system
	Manual extraction
	Logical extraction
	Hex dump
	Chip-off
	Micro read

	Data acquisition methods
	Physical acquisition
	Logical acquisition
	Manual acquisition

	Potential evidence stored on mobile phones
	Examination and analysis
	Rules of evidence
	Good forensic practices
	Securing the evidence
	Preserving the evidence
	Documenting the evidence and changes
	Reporting

	Summary

	Chapter 2: Understanding the Internals of iOS Devices
	iPhone models
	Identifying the correct hardware model

	iPhone hardware
	iPad models
	Understanding the iPad hardware
	Apple Watch models
	Understanding the Apple Watch hardware
	The filesystem
	The HFS Plus filesystem
	The HFS Plus volume

	The APFS filesystem
	The APFS structure

	Disk layout
	iPhone operating system
	The iOS architecture
	iOS security
	Passcodes, Touch ID, and Face ID
	Code Signing
	Sandboxing
	Encryption
	Data protection
	Address Space Layout Randomization
	Privilege separation
	Stack-smashing protection
	Data execution prevention
	Data wipe
	Activation Lock

	The App Store
	Jailbreaking

	Summary

	Chapter 3: Data Acquisition from iOS Devices
	Operating modes of iOS devices
	The normal mode
	The recovery mode
	DFU mode
	Setting up the forensic environment
	Password protection and potential bypasses

	Logical acquisition
	Practical logical acquisition with libimobiledevice
	Practical logical acquisition with Belkasoft Acquisition Tool
	Practical logical acquisition with Magnet ACQUIRE

	Filesystem acquisition
	Practical jailbreaking
	Practical filesystem acquisition with Elcomsoft iOS Forensic Toolkit

	Physical acquisition
	Practical physical acquisition with Elcomsoft iOS Forensic Toolkit

	Summary

	Chapter 4: Data Acquisition from iOS Backups
	iTunes backup
	Creating backups with iTunes
	Understanding the backup structure
	info.plist
	manifest.plist
	status.plist
	manifest.db

	Extracting unencrypted backups
	iBackup Viewer
	iExplorer
	BlackLight

	Encrypted backup
	Elcomsoft Phone Breaker

	Working with iCloud backups
	Extracting iCloud backups

	Summary

	Chapter 5: iOS Data Analysis and Recovery
	Timestamps
	Unix timestamps
	Mac absolute time
	WebKit/Chrome time
	SQLite databases
	Connecting to a database
	SQLite special commands
	Standard SQL queries
	Accessing a database using commercial tools

	Key artifacts – important iOS database files
	Address book contacts
	Address book images
	Call history
	SMS messages
	Calendar events
	Notes
	Safari bookmarks and cache
	Photo metadata
	Consolidated GPS cache
	Voicemail

	Property lists
	Important plist files
	The HomeDomain plist files
	The RootDomain plist files
	The WirelessDomain plist files
	The SystemPreferencesDomain plist files

	Other important files
	Cookies
	Keyboard cache
	Photos
	Thumbnails
	Wallpaper
	Recordings
	Downloaded applications

	Apple Watch
	Recovering deleted SQLite records

	Summary

	Chapter 6: iOS Forensic Tools
	Working with Cellebrite UFED Physical Analyzer
	Features of Cellebrite UFED Physical Analyzer
	Advanced logical acquisition and analysis with Cellebrite UFED Physical Analyzer

	Working with Magnet AXIOM
	Features of Magnet AXIOM
	Logical acquisition and analysis with Magnet AXIOM

	Working with Belkasoft Evidence Center
	Features of Belkasoft Evidence Center
	 iTunes backup parsing and analysis with Belkasoft Evidence Center

	Working with Oxygen Forensic Detective
	Features of Oxygen Forensic Detective
	Logical acquisition and analysis with Oxygen Forensic Detective

	Summary

	Chapter 7: Understanding Android
	The evolution of Android
	The Android model
	The Linux kernel layer
	The Hardware Abstraction Layer
	Libraries
	Dalvik virtual machine
	Android Runtime (ART)
	The Java API framework layer
	The system apps layer

	Android security
	Secure kernel
	The permission model
	Application sandbox
	Secure inter-process communication
	Application signing
	Security-Enhanced Linux
	Full Disk Encryption
	Trusted Execution Environment

	The Android file hierarchy
	The Android file system
	Viewing file systems on an Android device
	Common file systems found on Android

	Summary

	Chapter 8: Android Forensic Setup and Pre-Data Extraction Techniques
	Setting up the forensic environment for Android
	The Android Software Development Kit
	The Android SDK installation
	An Android Virtual Device
	Connecting an Android device to a workstation
	Identifying the device cable
	Installing the device drivers

	Accessing the connected device
	The Android Debug Bridge
	USB debugging

	Accessing the device using adb
	Detecting connected devices
	Killing the local adb server
	Accessing the adb shell
	Basic Linux commands

	Handling an Android device

	Screen lock bypassing techniques
	Using adb to bypass the screen lock
	Deleting the gesture.key file
	Updating the settings.db file
	Checking for the modified recovery mode and adb connection
	Flashing a new recovery partition
	Using automated tools
	Using Android Device Manager
	Smudge attack
	Using the Forgot Password/Forgot Pattern option
	Bypassing third-party lock screens by booting into safe mode
	Securing the USB debugging bypass using adb keys
	Securing the USB debugging bypass in Android 4.4.2
	Crashing the lock screen UI in Android 5.x
	Other techniques

	Gaining root access
	What is rooting?
	Rooting an Android device
	Root access - adb shell

	Summary

	Chapter 9: Android Data Extraction Techniques
	Data extraction techniques
	Manual data extraction
	Logical data extraction
	ADB pull data extraction
	Using SQLite Browser to view the data
	Extracting device information
	Extracting call logs
	Extracting SMS/MMS
	Extracting browser history

	Analysis of social networking/IM chats
	ADB backup extraction
	ADB dumpsys extraction

	Using content providers

	Physical data extraction
	Imaging an Android phone
	Imaging a memory (SD) card
	Joint Test Action Group
	Chip-off

	Summary

	Chapter 10: Android Data Analysis and Recovery
	Analyzing an Android image
	Autopsy
	Adding an image to Autopsy
	Analyzing an image using Autopsy

	Android data recovery
	Recovering deleted data from an external SD card
	Recovering data deleted from internal memory
	Recovering deleted files by parsing SQLite files
	Recovering files using file-carving techniques
	Recovering contacts using your Google account

	Summary

	Chapter 11: Android App Analysis, Malware, and Reverse Engineering
	Analyzing Android apps
	Facebook Android app analysis
	WhatsApp Android app analysis
	Skype Android app analysis
	Gmail Android app analysis
	Google Chrome Android app analysis

	Reverse engineering Android apps
	Extracting an APK file from an Android device
	Steps to reverse engineer Android apps

	Android malware
	How does malware spread?
	Identifying Android malware

	Summary

	Chapter 12: Windows Phone Forensics
	Windows Phone OS
	Security model
	Chambers
	Encryption
	Capability-based model
	App sandboxing

	Windows Phone filesystem
	Data acquisition
	Commercial forensic tool acquisition methods
	Extracting data without the use of commercial tools
	SD card data extraction methods

	Key artifacts for examination
	Extracting contacts and SMS
	Extracting call history
	Extracting internet history

	Summary

	Chapter 13: Parsing Third-Party Application Files
	Third-party application overview
	Chat applications
	GPS applications
	Secure applications
	Financial applications
	Social networking applications

	Encoding versus encryption
	Application data storage
	iOS applications
	Android applications
	Windows Phone applications

	Forensic methods used to extract third-party application data
	Commercial tools
	Oxygen Detective
	Magnet IEF
	UFED Physical Analyzer

	Open source tools
	Autopsy
	Other methods of extracting application data

	Summary

	Other Books You May Enjoy
	Index

